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A B S T R A C T   

With its update of the Bioeconomy Strategy and the Green Deal, the European Commission committed itself to a 
transformation towards a sustainable and climate-neutral European Union. This process is characterised with an 
enormous complexity, which policymaking needs to acknowledge for designing transition pathways. Modelling 
can support policymaking in dealing with uncertainty and complexity. This article reviews emerging and new 
developments and approaches to model the development of the bioeconomy. We focused our review on how 
bioeconomy modelling addresses key enabling factors related to (i) climate change, (ii) biodiversity, (iii) circular 
use of biomass, (iv) consumer behaviour related to biomass and bioproducts use, and (v) innovation and tech-
nological change. We find that existing modelling frameworks offer large possibilities for extensions and con-
siderations for analysing short-run impacts related to climate change and circularity, and to lesser degree for 
biodiversity, and we identify possibilities for developing further the existing bioeconomy models. However, 
addressing key processes related to societal and technological changes is more challenging with existing/con-
ventional modelling approaches, as they specifically relate to how innovations transform economic structures 
and how consumers learn and change their preferences and what kind of dynamics are to be expected. We 
indicate how emerging modelling techniques such as Agent-Based Modelling could improve and complement 
existing bioeconomy modelling efforts by allowing for the consideration of structural change and, more gener-
ally, transformation of the economic metabolism. This modelling approach eclecticism asks for a better 
description of modelling targets, a sound reflection on the meaning of time horizons and a closer cooperation 
between the different research communities. Furthermore, it will benefit from the developments in big data and 
artificial intelligence from which we expect valuable guideposts for designing future modelling strategies.   

1. Introduction 

The bioeconomy is considered an important means to achieve sus-
tainable development and for tackling the climate and biodiversity cri-
ses resulting from overconsumption of and overreliance on non- 
renewable resources (El-Chichakli et al., 2016; Bell et al., 2018; 
Birner, 2018; Aguilar et al., 2019). While many, also sometimes con-
flicting definitions and narratives exist (Kardung et al., 2021; Vivien 
et al., 2019), the bioeconomy is generally considered to relate to the use 
of biological resources and their substitution for fossil-based resources 
and materials to produce energy, food, feed, fibre, and other manufac-
tured goods, and the application of biological processes for 
manufacturing goods. While the earlier understanding focused more 

narrowly on resource substitution, bioenergy, and biotechnology 
(D’Amato et al., 2017; Birner, 2018), the understanding is broadening to 
also include sustainability and circularity to meet the United Nation’s 
Sustainable Development Goals as well as the objectives of the Paris 
Agreement (El-Chichakli et al., 2016; Hetemäki et al., 2017; Stegmann 
et al., 2020; Heimann, 2019; European Commission, 2020; Global Bio-
economy Summit, 2020). Therefore, the substitution perspective is 
shifting in favour of a much more profound transformation perspective. 

Modelling is an important tool to support policy making (Kolkman, 
2020) and can facilitate a better understanding of the complexity, 
trade-offs, and potential pathways to achieve the transition to a bio-
economy (O’Brien et al., 2017). A large number of bioeconomy models 
already exist (see e.g., van Leeuwen et al., 2013; Angenendt et al., 2018; 
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Verkerk et al., 2018; Ringkjøb et al., 2018; Welfle et al., 2020; Nielsen 
et al., 2018). Many of the existing models have their origin in applied 
economics and are designed with a sectoral focus (e.g., on agriculture or 
forestry and their related industries), which limits their ability in 
capturing cross-cutting issues (e.g., climate change, biodiversity loss, 
circularity) that are of importance to the bioeconomy transition. 
Importantly, existing bioeconomy models generally fall short in 
addressing long-run fundamental paradigm changes as affected by 
technological progress and behaviour change (Verkerk et al., 2018). 

The challenge in bioeconomy modelling stems from a subtle but 
important difference between the notions of transition and trans-
formation (Pyka and Urmetzer, 2022). In a transition process, e.g., a 
fossil-based industry is replaced by a bio-based industry which takes 
completely the place of its predecessor offering the same products and 
services, while economic structures are not affected. In a transformation 
process, e.g., when production is re-organizing value creation networks 
and consumers increasingly develop and change to new and more sus-
tainable lifestyles, the economic structures on the supply side as well as 
the economic behaviour on the demand side fundamentally change and 
mutually influence each other. This is not a simple replacement, but a 
complex and irreversible adaptation of the whole system, which is 
driven by innovation, new lifestyles, and potential changes in the 
governance system, i.e., the economy transformed itself structurally 
(Saviotti et al., 2020). Thus, a transformation towards higher degrees of 
sustainability involves fundamental pattern changes. We argue that this 
difference between transition and transformation has profound conse-
quences for modelling. Whereas modelling transitions can be encapsu-
lated in existing approaches with stable structures, modelling 
transformation requires new or alternative approaches to endogenize 
changes and complexity. 

To capture transition pathways towards a bioeconomy, models 
should ideally be able to endogenously consider the enabling factors of 
this transition and their interdependencies. We focus here on the 
following five enabling factors: (i) climate change, (ii) biodiversity, (iii) 
circular use of biomass, (iv) consumer behaviour related to biomass and 
bioproducts use, and (v) innovation and technological change, as we 
consider these factors will be playing a prominent role in the bio-
economy transition and should thus be prioritized in bioeconomy 
modelling. First, tackling climate change is one of the key issues behind 
the development of a bioeconomy and it has been a topic for many de-
velopments in modelling. Considering climate change in bioeconomy 
modelling is a challenging but also a promising task as it affects both 
demand for biomass (e.g., feedstock for bioenergy, bioproducts and 
biobased chemicals) and its supply (through climate change impacts on 
yields, for example) simultaneously. Second, biodiversity is key to 
secure the long-term provision of ecosystem services that are crucially 
important to society (IPBES et al., 2019). The positive nexus between 
biodiversity and ecosystems productivity and resilience is 
well-established (Liang et al., 2016; Mori et al., 2013; O’Brien et al., 
2017; Tilman et al., 2012). Productive and resilient ecosystems are 
fundamental to ensure the sustained and sustainable biomass supply 
needed from the bioeconomy, as well as socio-economic sustainability. 
Third, circular use of biomass, namely the adoption of recycling, reusing 
or repairing practices, can contribute to increasing biomass availability 
and reducing waste. In a similar vein, waste reduction strategies 
contribute to the achievement of this goal and at the same time reduces 
the necessary throughput of a circular economy. Circularity and waste 
reduction are increasingly linked to the bioeconomy (e.g., Hetemäki 
et al., 2017; Stegmann et al., 2020). The possibility of turning biowaste 
and residues into valuable bio-based products, as well as the extension of 
practices like cascaded use of products can, potentially, reduce the de-
mand for virgin biomass feedstock and contribute to lower the compe-
tition for resources (biomass, land etc.) and mitigate climate change 
(Risse et al., 2017). Fourth, the consideration of changing consumer 
preferences and consumption behaviour is fundamental to ensure the 
effectiveness of policy measures towards a bioeconomy (Davies et al., 

2014; Schlaile et al., 2016; Gold and Rubik, 2009; Lähtinen et al., 2019). 
For example, consumer preferences concerning dietary changes are 
crucial for sustainability of food systems (e.g., Sanchez-Sabate and 
Sabaté, 2019; Kause et al., 2019), as well as climate change mitigation 
(e.g., Frank et al., 2019, Roe et al., 2019). Fifth, technological change 
and innovation are considered of key importance for the development of 
innovative and climate friendly bio-based products and technologies 
(Pyka, 2020; Lovrić et al., 2020) and therefore require major attention in 
modelling the bioeconomy. For example, the human capacity to breed 
and utilize new organisms has been sensibly expanded from the modern 
tools developed in molecular biology. This has led to an increase in 
productivity of agriculture and fisheries and to the production of a broad 
range of products that were originally mined (Zilberman et al., 2013). 

In this paper, we analyse emerging and new developments and ap-
proaches to model the development of the bioeconomy to close the 
identified gaps of existing models. We looked at models that follow the 
definition given by Acs et al. (2019), who defined a model as “an 
analytical representation or quantification of a real-world system, used 
to make projections or to assess the behaviour of the system under 
specified conditions”. Specifically, we address the questions (1) to what 
extent do existing bioeconomy models already consider climate change, 
biodiversity, circularity, consumer behaviour and technological devel-
opment and where are their limitations, and (2) what alternative 
modelling approaches potentially close the remaining gaps concerning 
long run structural change which cannot be closed by further sophisti-
cations of existing models. 

2. What extensions are in development to model the enabling 
factors of bioeconomy transition? 

Bioeconomy modelling has mostly progressed in established 
modelling approaches that consider economic modelling (computable 
general equilibrium (CGE) models, partial equilibrium (PE) models), 
environmental modelling (biophysical and land change models), Inte-
grated Assessment Models (IAMs) and specialist models (or bottom-up 
models) (O’Brien et al., 2017). In the following subsections we outline 
how (i) climate change, (ii) biodiversity, (iii) circular use of biomass, 
(iv) consumer behaviour related to biomass and bioproducts use, and (v) 
innovation and technological change are considered in recent model 
extensions for bioeconomy modelling based on the results of a literature 
review. The snowballing procedure (Wohlin, 2014) was used to identify 
the relevant works to be included. An initial literature search has been 
done in Google Scholar to identify the start set using the results of the 
cartesian product of the following triple set of keywords: {“climate 
change”, “biodiversity”, “circularity”, “consumer behaviour”, “innova-
tion”, “technological change”}; {“economic”, “environmental”, “en-
ergy”} and {“modelling”}. Based on the title and keywords in the first 
iteration and on the content of the abstract in the second, the number of 
articles has been reduced in a first step. In the second, the content of the 
article was analysed to evaluate their relevance and for making sure that 
the work was following the definition of models given by Acs et al. 
(2019) and that was applied in the field of economy, environmental 
science and energy modelling. The results are presented in the following 
subsections. 

2.1. Climate change 

Models have been developed to understand how anthropogenic ac-
tivities contribute to or can mitigate climate change, as well as to un-
derstand the impacts and to assess options to adapt to climate change 
impacts. 

Changes in mean and extreme temperatures and rainfall directly 
influence productivity and site suitability for crops and tree species and 
alter the frequency and severity of disturbance events such as wildfire, 
storms, pests, and pathogens (Challinor et al., 2014; Lindner et al., 2014; 
Seidl et al., 2017; Smith and Gregory, 2013), which can ripple through 

A. Pyka et al.                                                                                                                                                                                                                                    



Journal of Cleaner Production 330 (2022) 129801

3

bioeconomy sectors by affecting sustainable biomass supply and its costs 
thereby disrupting bio-based markets. For example, extended droughts 
in recent summers in central Europe followed by insect outbreaks have 
led to widespread tree mortality for commercially important tree species 
and large volumes of salvaged wood. 

Improvements to consider climate change in modelling bioeconomy 
sectors is progressing in different lines of research. An important line is 
linked to the development of Shared-Socioeconomic Pathways (SSPs) 
(Riahi et al., 2017) developed by the climate change research commu-
nity to facilitate the integrated analysis of future climate impacts, vul-
nerabilities, adaptation, and mitigation. These scenarios describe how 
society and economies might develop over the next decades (Wiebe, 
et al., 2014; Vuuren et al. 2017; Van Meijl et al., 2020b). 

Several open questions are currently addressed with model exten-
sions and new identified gaps offer opportunities for further modelling 
activities: Hertel and de Lima (2020) stress how modelling of climate 
change impacts on agriculture has so far focused on yield changes of a 
few important staple crops and that in future the consequences of 
climate change for labour productivity, as well as for purchased inter-
mediate inputs should be included. Largely overlooked is the impact of 
climate change on the rate of total factor productivity growth and the 
potential for more rapid depreciation of the underlying knowledge 
capital underpinning this key driver of agricultural output growth 
(Hertel and de Lima, 2020). Further research is also needed that con-
siders impacts on non-staple crops, which, while less important from a 
caloric point of view, are critically important in redressing current 
micronutrient deficiencies, so-called micro-hunger in many diets around 
the world. For forestry, including climate change impacts in large-scale 
applications has typically been done by linking dynamic vegetation 
models to empirical forest models by incorporating productivity changes 
(e.g., Eggers et al., 2008; Vauhkonen and Packalen, 2018) and changes 
in tree species suitability (e.g., Schelhaas et al., 2018; Hanewinkel et al., 
2013), or by including forest or land management practices in dynamic 
vegetation models (Luyssaert et al., 2018). Promising progress is also 
being made by endogenizing climate change impacts through 
climate-sensitive growth functions (Schelhaas et al., 2018) and models 
(Härkönen et al., 2019). While progress is being made in modelling 
natural disturbances (e.g., Reyer et al., 2017; Dobor et al., 2020; Pugh 
et al., 2019), this is yet to be translated into bioeconomy modelling, e.g., 
to assess biomass availability. 

Climate change mitigation is receiving a lot of attention in existing 
modelling efforts due to the relative importance of the bioeconomy 
sector in this context. Existing economic models and Integrated 
Assessment Models (IAMs) allow exploring how emissions can be 
reduced by introducing mitigation technologies (incl. land use and 
management), energy saving, CO2 taxes and diet changes. Mitigation 
technologies can be introduced explicitly (as typical for optimization PE 
models) or by using marginal abatement curves (typical for CGE 
models). Biophysical models can provide insights in sustainable biomass 
availability for material and energy uses (Verkerk et al., 2011, 2018; di 
Fulvio et al., 2019; Jonsson et al., 2020) and provide insight into 
ecosystem carbon stocks and sinks (e.g., Böttcher et al. 2012; Nabuurs 
et al. 2018; Forsell et al. 2019; Pilli et al. 2017; Jonsson et al., 2020). 

Renewable resources’ productivity depends on climatic and bio-
physical conditions. With a growing understanding of the impacts of 
climate change adaptation, it is also becoming more and more clear that 
adaptation is needed. Despite some examples (e.g., Alexander et al., 
2018), adaptation of complex systems is mostly beyond the scope of the 
existing models. 

2.2. Biodiversity 

Most biodiversity modelling studies have focused on assessing the 
future impacts of climate change, selecting places for biodiversity con-
servation practices (e.g., establishment of protected areas, habitat 
restoration, and/or species translocation) and quantifying or forecasting 

the effects of anthropogenic factors on biodiversity (Araújo et al., 2019). 
Changes in land use and land cover are largely neglected, although these 
represent the most significant and immediate threats to biodiversity 
(Titeux et al., 2016; Titeux et al., 2017; IPBES et al., 2019). A recent 
study (Leclère et al., 2020b and Leclère et al., 2020) linked multiple PE, 
CGE and IAM models with specialised biodiversity models to explore 
biodiversity targets to reverse global biodiversity trends by 2050. The 
study argues that future assessments should seek to better represent 
land-management practices as well as additional pressures on land and 
biodiversity, such as climate change, overexploitation, pollution, and 
biological invasions. 

Future biodiversity modelling should not be limited to assess how 
anthropogenic activities and climate change affect biodiversity loss. 
Biodiversity promotes ecosystem functioning and positively affects pri-
mary productivity (Liang et al., 2016; O’Brien et al., 2017) and the ef-
fects of biodiversity loss on ecosystem functioning should thus be 
considered in modelling. Furthermore, there is an urgent need to 
improve our understanding of how economies and societies will be 
impacted if current trends in biodiversity loss will continue. Continued 
biodiversity loss could impair the provisioning of important services (e. 
g., water quality regulation, crop pollination) and thereby negatively 
affect human wellbeing (Chaplin-Kramer et al., 2019). Existing models, 
data and modelling approaches are currently not ready for estimating 
impacts from changes in biodiversity on economies (Crossman et al., 
2018). Therefore, modelling biodiversity in a socio-economic context, i. 
e. including biodiversity aspects in existing models, remains an impor-
tant challenge as it is difficult and controversial when it comes to 
commoditization of more and more aspects of nature in its public good 
dimension (Titeux et al., 2016, 2017; Chaplin-Kramer et al., 2019). In 
the Dasgupta (2021) review on “the economics of biodiversity” it is 
stressed that to get nature inclusive decisions, the inclusion of natural 
capital stocks and related ecosystem services in economic models is 
difficult but a step in the right direction. 

2.3. Circular use of biomass 

The established bioeconomy models are mostly based on the notion 
of linear (produce, use, discard) product life cycles and economies. To 
increase their effectiveness in the context of bioeconomy, the proper 
representation of recycling, reuse, cascading of materials as well as 
waste reduction strategies in models is of outmost importance. With due 
exceptions, existing multi-sectoral models (CGEs and IAMs) almost 
completely ignore material cycles and recycling, as well as co- and by- 
production of products and materials (Pauliuk et al., 2017; McCarthy 
et al., 2018). 

To our knowledge, three multi-region CGE models include circularity 
aspects by considering waste management and material recovery and 
the inclusion of secondary production sectors: The ENGAGE-Material 
model (Winning et al., 2017) considers waste management and mate-
rial recovery and includes secondary production sectors for steel. 
EXIOBASE 3 (Stadler et al., 2018) does the same for six metals. In the 
MAGNET CGE model (van Meijl et al., 2018) bio-based residues can be 
used for feed, bioenergy, or biobased materials and a waste management 
sector is introduced (Bartelings et al., 2004). 

A more detailed approach dealing with secondary production, that 
goes at the expenses of its geographical resolution, can be found in some 
single-region CGE models (Godzinski, 2015; Masui, 2005; Fujimori 
et al., 2017) in which a waste management sector is introduced. Hartley 
et al. (2016) monetized the recyclable content of 13 waste flows, and use 
these figures in the model as an exogenous supply shock for resource 
availability. In PE models, the use of residues and recycled materials is 
typically considered in more detail. For example, in the forestry context 
recycled paper and by-products (e.g., wood chips, sawdust, black liquor) 
are generally considered, as are by-products in agricultural models. 
Nevertheless, these models still fall short in considering recycling (e.g., 
post-consumer wood) or cascading of products. 
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A proper representation of products’ lifetime and the role of product- 
lifetime extending activities (e.g., remanufacturing, repair, and reuse) is 
still lacking in all the models with their roots in the economic field. CGE, 
PE and all IAM models, in fact, show little or no inclusion of stock ac-
counting. As highlighted by Pauliuk et al. (2017), an improved repre-
sentation of physical material cycles in models gives the opportunity to 
model more realistically the effects of an efficient use of (bio)physical 
resources due to circular and lifetime extending practices, increasing the 
policy relevance of models. The integration of models with (dynamic) 
material flow analysis is one of the ways forward (Cao et al., 2019). 

Circular and lifetime extension practices can play an important role 
in potentially increasing biomass availability, sustainability of bio-
energy as well reducing food losses. Because of the multiple in-
terdependencies between circularity approaches and innovation as well 
as on consumer behaviour, it is most likely that the prevailing economic 
structures and value creation networks are affected. Thus, the 
complexity increases sharply and limits the possibilities of model ex-
tensions. Instead, new modelling approaches discussed in section 3 
might promise to offer a better fit. 

2.4. Consumer behaviour related to biomass and bioproducts use 

Changes in consumer behaviour are related to changes in preferences 
or lifestyle. Lifestyle changes are those actions aiming at fundamental 
pattern changes in consumption behaviour which for example suggests 
new modes of diet, leisure activities or mobility to name but a few. This 
type of non-standard decisions by consumers (i.e., decisions and be-
haviours that deviate from those based on the neoclassical vision of the 
rational homo oeconomicus) are much more complex to be captured in 
models compared to, for example, those standard, price-induced 
changes leading to substitution effects between consumer products. 
Lifestyle changes can be included in models by (van den Berg et al., 
2019, see also Table 1): 

● exogenously including lifestyle changes into the underlying story-
lines and narratives used.  

● endogenously modifying assumptions and parameters in the model.  
● explicitly modelling the changes in lifestyle in the model. 

Table 1 
Example of how the impact of food lifestyle changes has been performed in the literature. Modified from van den Berg et al.(2019).  

Categories Measures Details Model Source 

Healthier, less 
meat-intensive 
diet 

Willet diet Conforming to health recommendations IAM (GCAM) van de Ven et al. (2018) 
IAM (IAM) –(IMAGE) van Vuuren et al. (2018) 

“Healthy eating” recommendations, transitioning from 2010 to 2030 (IAM) – IAM (IMAGE) Stehfest et al. (2009) 
Based on the relative kg CO2-eq savings from Willet diet Input-output analysis Lekve Bjelle, 

Steen-Olsen, and Wood 
(2018) 

Based on the relative kg CO2-eq savings from Willet diet in addition to organic 
farming 

Input-output analysis Lekve Bjelle, 
Steen-Olsen, and Wood 
(2018) 

Compares carbon footprint of user’s diet with lower carbon, and lower calorie diet EIO-LCA model  
Reduced 
ruminant meat 

Complete protein substitution of cattle, sheep, goats and buffaloes, by plant- 
proteins, transitioning from 2010 to 2030 

(IAM) – IAM (IMAGE) Stehfest et al. (2009) 

Beef consumption reduction, substitute beef with pork and poultry PEM (TIMES) Frenette et al. (2017) 
Dairy and Poultry scenario – ruminants still used for dairy product supply, with 
culled calves and cows entering the meat chain, with a reduced ruminant meat 
consumed. It is assumed that animal production efficiencies increase to the North- 
western European (i.e. Swedish) levels of highly intensive systems. 

Energy modelling - 
spreadsheet model 

Röös et al. (2017) 

Vegetarian diet Complete protein substitution of pork and poultry by plant-proteins, transition 
from 2010 to 2030 

(IAM) – IAM (IMAGE) Stehfest et al. (2009) 

No meat, but includes dairy products and possibly fish products (IAM) – IAM (GCAM) van de Ven et al. (2018) 
Beef, poultry and pork reductions, substitute with an increase in food grains, fruit, 
vegetables, eggs and dairy 

(IAM) – PEM (TIMES) Frenette et al. (2017) 

Dairy and Aquaculture scenario – it is assumed that demand for animal protein 
continues rapidly, but health consciousness increases combined with high 
efficiencies by intensive aquaculture systems, by 2050 all animal meat consumed 
are from aquatic products (20% of aquaculture products are oysters, mussels and 
other filter feeding and 80% are low trophic-level finfish).  

- Custom spreadsheet 
model 

Röös et al. (2017) 

Artificial Meat and Dairy scenario – consumer acceptance of in vitro meat 
matched with production technological breakthroughs (meat and dairy replaced 
by these emerging proteins and those produced from insects and algae), 
essentially protein production in this scenario is landless.  

- Custom spreadsheet 
model 

Röös et al. (2017) 

Vegan diet No animal products, additional protein substitution of eggs and milk by plant- 
proteins, transition from 2010 to 2030 

(IAM) – IAM (IMAGE) Stehfest et al. (2009) 

No animal products (no meat, dairy or fish) (IAM) – IAM (GCAM) van de Ven et al. (2018) 
Progressively reduce animal products until 2030 (substitute by grain and 
vegetable consumption) 

(IAM) – PEM (TIMES) Frenette et al. (2017) 

Plant-Based Eating scenario – animal-free (with the exception of a small amount 
of wild stock seafood). Policy actions discourage the consumption of animal 
products, in addition to growing environmental concern from the public, and 
technological developments of plant-based emerging proteins, vegan diets are 
most common. Assumed that grazing land are used for other activities, and the 
cropland is used production of foods directly for human consumption  

- Custom spreadsheet 
model 

Röös et al. (2017) 

Food waste reduction and composting Assumed excess food used for animal feed as food waste, due to a reduction in 
final calories for humans 

IAM (GCAM) van de Ven et al. (2018) 

Eliminate food waste and composting Input-output analysis Lekve Bjelle, 
Steen-Olsen, and Wood 
(2018) 

Organic and local foods Organic and local foods Input-output analysis Lekve Bjelle, 
Steen-Olsen, and Wood 
(2018)  
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The first approach is the simplest and, so far, most widely used 
method and generally relies on applications of models for different 
storylines, with the Shared-Socioeconomic Pathways (SSPs) framework 
representing its most prominent example. Such storylines can draw on 
qualitative research aiming at understanding how consumers behav-
iours can change over time and include assumptions on lifestyle changes 
and other non-standard decisions. Examples of how food diet-related 
lifestyle changes have been included exogenously can be found in van 
Vuuren et al. (2018), van de Ven et al. (2018), van Meijl et al. (2020a) 
and Frank et al. (2019). Changes in preferences might be estimated with 
econometric methods and by historical simulations to validate economic 
models (Dixon and Rimmer, 2013). However, obviously this approach is 
not suited to understand the endogenous and highly interdependent 
evolution of consumption behaviour. 

Existing economic models generally depict demand for products as a 
function of income and prices. The endogenous representation of con-
sumer behaviour through modified parameters in the model is more 
challenging but is of crucial importance in the bioeconomy transition. 
For example, long used relationships between graphic paper demand 
and consumers’ income growth appear no longer valid, as at high 
enough income levels, further income growth is now associated with 
decreasing consumption (Chiba et al., 2017; Hurmekoski and Hetemäki, 
2013), often explained by the adoption of internet and electronic media. 
This has led to new methods and additional parameters being considered 
to assess the demand for certain wood products (Chiba et al., 2017; Latta 
et al., 2016; Rougieux and Damette, 2018; Hurmekoski et al., 2014). In 
general, the endogenous representation of non-standard behaviours is 
difficult, especially for lifestyle changes not related to technologies. One 
promising approach consists in the dynamic representation of the social 
and technological learning of adopter groups influencing the desired 
technological transition, but this is already breaking up the tight corset 
of standard models used in bioeconomy modelling. van de Ven et al. 
(2018) and Li (2017) have, for example, introduced heterogeneity 
among decision-makers within energy modelling, Cayla and Maïzi 
(2015) considered household behaviour and heterogeneity in terms of 
daily energy consumption and equipment purchasing behaviour in their 
TIMES-Households model and McCollum et al. (2017) explored how the 
adoption of electric vehicles is influenced by social and technological 
learning. All these are exercises done in the energy modelling domain, 
that are worth to be considered as future paths to follow for the 
modelling of (bio-based) technology diffusion. 

To our knowledge, only Edelenbosch et al. (2018) tried to explicitly 
model the changes in lifestyle including changing behaviour in the 
modelling of social learning dynamics in the IAM IMAGE. Similarly, 
Niamir et al. (2020) proposed a way to integrate the evolutionary dy-
namics of micro-level behaviourally rich Agent-Based Models (ABM, see 
section 3.2) into a macroeconomic model by scaling up and linking the 
results of the empirical ABM BENCH-v3 with the EU-EMS CGE model. 
These last two are examples of approaches which are used outside the 
context of bioeconomy modelling but could nonetheless be reproduced 
in this context. Changing lifestyles is closely related to learning and 
experimenting which eventually affects economic structures and trans-
forms the whole economic system. Once more the limits of existing 
models are reached and most recent modelling attempts, at least 
partially, already refer to the new modelling tools (see section 3.2). 

2.5. Innovation and technological change 

Modelling Innovation and technological change has been a topic of 
economic research already for very long time. In the 1940s the linear 
model of innovation was introduced to model the relationship between 
science, technology and the economy (Godin, 2006). Still today, the 
analysis of technological change in bioeconomy models is mostly based 
on mainstream neoclassical economics methods (Köhler et al., 2018; 
Arthur, 2021) where the emphasis is on understanding the impact of 
technological change rather than understanding its drivers such as 

research and development. It is surprising that although there is wide 
agreement among economists about the overwhelming importance of 
technological change for economic growth, in many existing models it is 
still modelled exogenously and falls like manna from heaven. Table 2 
gives an overview of existing models with technological change. 

In several IAMs and economic models, technological change is 
assumed to be represented by an exogenous parameter; for example, an 
autonomous energy efficiency representing the decoupling of energy use 
and economic growth which is assumed to capture all non-price driven 
improvements. Another common approach consists in the semi- 
exogenous incorporation of so-called backstop technologies (i.e., tech-
nologies at low technological readiness level) that are already known 
and completely available as blueprints and which can be unlocked by 
investing in research and development (R&D). In more recent models, 
technological change is endogenized as price-induced, R&D-induced 
and learning-induced. The first is based on the idea that changes in 
relative factor prices, typically energy or endowment (land, labour, 
capital) prices, stimulates innovation, namely substitution of those fac-
tors that became relatively more expensive. In the second, which is the 
most widely applied way to endogenize technological change (see Gil-
lingham et al., 2008 for an exhaustive overview in the field of energy), 
R&D increases the stock of knowledge, which allows for a deterministic 
introduction of process innovation in a pre-defined technology (see e.g. 
Smeets-Kriskova et al., 2017a; 2017b). The third approach relies on the 
learning-by-doing effect, namely the cost-reduction of technologies 
based on the experience, which is modelled using learning curves. 

Modelling technological change in environmental models so far is 
less common, as they hardly cover socio-economic variables. The effects 
of technological change may be incorporated in environmental models 
exogenously through scenarios storylines. 

A promising new development on the relationship between in-
vestments in R&D and technological progress is the introduction of 
heterogeneous firms, because in the transition period, introducing bio-
economy innovations will lead to the co-existence of firms still relying 
on fossil-based technologies and firms which already have switched to 
bioeconomy technologies. However, the possibilities of these exten-
sions, where the heterogeneity is approximated by productivity differ-
ences between firms which apply the same production function (Melitz, 
2003) in economic (e.g. CGE) models (Balistreri and Rutherford, 2013; 
Dixon et al., 2018; Akgul et al., 2016) are limited. Already more than 30 

Table 2 
How technological change is modelled in some of the most known IAM, CGE and 
PE models. Adapted and updated from Gillingham et al. (2008) and Löschel and 
Schymura (2013).  

Model Model 
type 

Representation of technological change* 

AGMEMOD PE Exogenous 
CAPRI PE Exogenous 
GCAM IAM Exogenous 
EFI-GTM PE Exogenous, different technologies to produce a specific 

product 
GEM-E3 CGE Exogenous 
GFPM PE Exogenous 
GFTM PE Exogenous 
GLOBIOM PE Exogenous, price-induced, different technologies to 

produce a specific product 
IMACLIM IAM Exogenous, learning-by-doing 
IMAGE IAM Exogenous, price-induced, learning-by-doing 
MAGNET CGE Exogenous, Option for endogenous tech change by 

explicit R&D sector, options for CAP driven tech change 
MARKAL Other Learning-by-doing 
MESSAGE Other Learning-by-doing 
POLES PE Learning-by-doing 
PRIMES PE Learning-by-doing 
REMIND IAM Learning-by-doing 
TIMES PE Learning-by-doing 
WITCH IAM Research and development, backstop, learning-by-doing  
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years ago, Stiglitz (1987) has emphasized the importance of localized 
technological progress which rejects the possibilities to model innova-
tion processes of firms as improvements along one production function. 
In this particular case of the bioeconomy transformation it is evident, 
that in these models apples are compared with pears and implications 
stemming from the heterogeneity of technological approaches are faded 
out. 

The modelling of negative emission technologies (NETs) as mitiga-
tion strategy represents an interesting example that can further highlight 
the limitations of the mainstream modelling approaches. The massive 
reliance on NETs in the mitigation scenarios in line with the Paris 
Agreement, especially in the form of bioenergy with carbon capture and 
storage (BECCS), is evident (Lawrence and Schäfer, 2019). In these 
scenarios BECCS are assumed to be technologically ready and thus 
available for significant deployment from 2030 onwards. The real utility 
of these mitigation strategies will depend on the rate of technological 
progresses that determines when and how they will become commer-
cially available at affordable costs. Modelling NETs’ technological dy-
namics is thus crucial to understand when they can effectively become a 
viable mitigation strategy. For two reasons this is a questionable 
modelling strategy: (i) the technology is still in its pilot phase charac-
terized by strong uncertainties which do not allow for the assumption of 
a deterministic progress trajectory. And (ii) the NETs are introduced to 
the models as an end-of-pipe technology packed on existing economic 
structures which do not change over several decades. 

In all the aforementioned cases, the rationale is that technological 
solutions have already been developed, and their use depends solely on 
cost-benefit considerations of the agents. Technological change is based 
on existing technologies and provides for efficiency increases. This 
approach excludes the emergence of new and the disappearance of 
mature industries, i.e., structural change. Neither true uncertainty, 
characteristic for innovation, nor potential failures or experimental 
behaviour and learning are considered. However, these are important 
features of innovation relevant for long-term development. Instead, 
innovation is reduced to a deterministic technological change in a well- 
defined decision problem. Model extensions of existing models therefore 
are restricted to analyse only short-run adaptations and incremental 
technological improvements along narrow and well-defined technolog-
ical trajectories. 

3. What alternative modelling approaches are available to 
address new policy needs? 

In section 2 we focussed on efforts and possibilities to extend existing 
models for bioeconomy modelling. In this section we discuss first the 
reasons for an urgent need for new modelling approaches, and then 
highlight promising developments. 

3.1. Transformation processes are long-term 

While existing models can be extended to analyse short-run re-allo-
cations in the bioeconomy transition processes, they mostly omit de-
velopments such as structural change and/or the fundamental 
reorganisation of the value creation and consumption process. This 
omission limits their use for a better understanding of the long-term 
transformation to a sustainable bioeconomy. The reasons for this limi-
tation are of a principal nature and spotlight the limitations of existing 
models (see Nelson et al., 2018). The methodological orientation of most 
existing models is in neoclassical welfare theory makes the models 
normative, while a positive/descriptive orientation would be required to 
reflect long-term, open and non-deterministic developments: The 
experimental introduction of innovations, which unavoidably goes hand 
in hand with failed attempts due to the uncertainty inherent in inno-
vation, is beyond the scope of models which are built on optimal deci-
sion making (e.g. Simon, 1991). Further, positive feedbacks and 
increasing returns due to mutual interdependencies, responsible for the 

emergence of new behavioural patterns and path dependencies, cannot 
be captured because of the built-in equilibrium orientation (e.g. Arthur, 
2021). While these limitations are identified for economic models, they 
may also (partly) apply to environmental models (e.g., with regards to 
land use practices). 

The major motive for an increasing interest in alternative modelling 
approaches in the field of the bioeconomy is a growing critique crys-
tallizing around (i) the assumption of stable optimal technologies, which 
excludes innovation, and (ii) the assumption of a representative opti-
mizing agent, which excludes dynamics generated by the interaction of 
heterogeneous actors. 

If the drivers of transformation processes are innovation and 
changing behaviour, it is contradictory to exclude them by assumption. 
This general critique is not new. For almost 40 years, evolutionary 
economists (Nelson et al., 2018) are arguing for alternative modelling 
frameworks when it comes to the analysis of long-term innovation 
driven developments. Therefore, it is not surprising that from an eco-
nomic theory point of view, most alternatives concerning the analysis of 
transformation processes rely on ideas of evolutionary economics 
(Safarzynska et al., 2012) and complexity models (Arthur, 2021), which 
can be considered as its formal modelling-oriented branch (Beinhocker, 
2006). 

More than ten years ago, Timmermans and de Haan (2008) observed 
that models theorizing and investigating structural change of economic 
systems and transformations of social systems have been almost absent 
and - according to our knowledge - this has not drastically changed until 
today. Only a small number of bioeconomy-related studies exist so far 
that applied emerging modelling approaches (e.g., Schiller et al., 2014; 
Mertens et al., 2018; Maes and Van Passel, 2019), with some notable 
work such as that of Arneth et al. (2014) who coupled a global vegeta-
tion model with a socio-economic ABM. Possible reasons for the limited 
uptake for bioeconomy modelling are the inherent difficulties in dealing 
with complex systems and hesitation towards emerging modelling ap-
proaches in existing modelling communities. 

The different focus of existing and emerging modelling approaches 
corresponds with the difference between simple and complex systems 
(Arthur, 2021) (Table 3). To apply the rich toolkit of existing models, the 
inherent complexity of long-term development has to be excluded by a 
set of assumptions. By removing these assumptions, the analysis of 
long-term developments becomes possible, but at the price of a lower 
level of detail, which is undoubtedly one of the merits of existing 
modelling approaches. 

Complexity models do not exclude innovation driven developments 
and qualitative change by assumption, but allow for their endogenous 
consideration, and they work neither with a fixed set of preferences nor 
with exclusive price adjustment in consumption behaviour. Instead 
learning and experimentation are considered to be relevant on the 
supply and the demand side and responsible for fundamental pattern 
changes, e.g. the emergence of new industries or of new lifestyles. This is 
a condition-sine-qua-non for a better understanding of long-run 

Table 3 
Comparison of simple and complex systems using the features of a sustainability 
transformation highlighted by Köhler at al. (2018).   

Simple systems Complex systems 

Agents and 
interactions 

Homogenous and symmetric, 
optimization 

Heterogeneous and 
asymmetric, learning and 
experimenting 

Composition Decomposable, units can be 
analysed separately 

Non-decomposable, can only 
be analysed as a whole 

Innovation Risky (probabilities are 
known) 

Uncertain (state space is 
changing) 

Dominant 
theme 

Allocation of resources, 
equilibrium-oriented, 
reversible 

Formation of structures, 
dynamics, different scales 

Change Exogenous (shocks), the 
equilibrium shifts 

Innovation and learning cause 
endogenous restructuring  
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dynamics and, most important, for an application in the policy realm 
concerning experimentation of alternative policy interventions to in-
fluence the desired transformation towards higher degrees of 
sustainability. 

Some of the recent developments also focus on the improvement of 
the communication between modellers and stakeholders. Agent-Based 
Models (ABMs), for example, are extended to so-called policy labora-
tories (see e.g., Schilperoord and Ahrweiler, 2014; Ahrweiler et al., 2015; 
Pyka et al., 2018), which add a graphical user interface with interven-
tion possibilities and observation monitors, and are used for an ex-ante 
evaluation of policy interventions. Policy laboratories allow for per-
forming experiments to strengthen the intuition of policy makers to deal 
with complex systems. Edmonds et al. (2019) are observing that the 
purpose of modelling shifts with the complexity models from prediction 
and explanation more and more to description and illustration, theo-
retical exploration, and analogy to facilitate social interaction among 
stakeholders, e.g., between modelling and foresight. 

In principle, the high expectations for complexity models to close the 
remaining gaps and to overcome the limitations of existing bioeconomy 
modelling approaches are justified. However, the general trade-off in 
modelling between generalization and specialization is also valid for 
complexity models, which are characterised by a significantly lower 
level of detail compared to existing models. 

In the following paragraphs, we briefly discuss the possibilities of 
complexity models beginning with system dynamics as an early prede-
cessor. Then we focus on agent-based models, which are currently by far 
the most popular branch of complexity models. Most interesting for 
bioeconomy modelling are recent attempts to combine socio-economic 
and environmental ABMs. 

3.2. Emerging modelling approaches: from system dynamics to agent- 
based modelling 

The system dynamics model approach must be considered as an early 
predecessor of complexity models, in particular because of its large 
popularity in addressing systemic interactions between socio-economic 
and environmental systems beginning with the work of Meadows et al. 
(1972). The principal idea of system dynamics is that dynamic system 
behaviour can only be analysed and understood, if systems are consid-
ered as a whole, which resembles to some extent the rationale of CGE 
models. Mutual interdependencies of the system components, however, 
cause changes in structures as well as unexpected developments and are 
responsible for non-linearities in the interaction patterns which are 
behind surprises and potential system’s collapse. 

The expressiveness of the complexity models in terms of qualitative 
structural changes in the economy and the focus on uncertain innovation 
stems from an explicit account of heterogeneous agents and the non- 
linearities, which emerge from their interaction. In this respect, the 
system dynamics approach turned out to be unwieldy concerning the 
heterogeneity of agents in the various subsystems. For this reason and 
with the increasing availability of computational methods, system dy-
namics was more and more replaced with ABMs since the early 1990s. 

With their bottom-up approach, ABMs (see Gilbert and Troitzsch, 
2005; Tesfatsion, 2002) raise the highest expectations within the group 
of complexity models. ABMs allow the analysis of emergent phenomena 
from the interactions of agents who follow ‘simple’ what-if rules. The 
actors differ in their behaviour and strategies and jointly shape their 
environment which in turn influences their behaviour. This feature al-
lows the ABM methodology to include dynamics on different scales, in 
particular the important micro-meso-macro feedbacks, which are lost by 
applying the idea of the representative actor. 

The following thought experiment illustrates the relevance for bio-
economy modelling: Supply side dynamics in bioeconomy sectors stem 
from the entrepreneurial introduction of a new bioeconomy technology 
on the micro-level, which eventually is the seed for a new bioeconomy 
industry on the meso-level and attracts imitating companies. This finally 

impacts qualitatively on macro-economic growth by lowering CO2- 
emissions. This is not yet the end of the dynamic cascade, but these 
developments are responsible for further feedbacks: The changes on the 
meso- and macro-levels increases the probability for the development of 
other bioeconomy technologies because the first feasibility is proven and 
further entrepreneurs are attracted, which eventually triggers changes 
in value creation networks on the meso-level, and so on. This beginning 
transformation is aggravated from dynamics on the demand side where 
new consumption patterns might be developed by avantgarde con-
sumers, which weigh higher ecological-friendly attributes. They even-
tually are imitated by larger groups and determine the mainstream 
consumer orientation which then facilitates further pattern changes, 
both on the demand and the supply side. In this process, at no stage 
actors are confronted with well-framed decision problems suitable for an 
optimization approach nor an equilibrium is attained. History matters in 
form of failed attempts, emerging new attractors, interactions taking 
place in dynamically changing networks, path dependencies etc. 

This possibility of a flexible representation of human-decision mak-
ing and the leaving-behind of the homo oeconomicus inspires many ap-
plications of ABMs. Land use and land cover change models (LUCC) 
might serve as an example, which reflect on the consequences of 
considering heterogeneous agents and the consequence for decision 
making by applying decision heuristics instead of optimization (see 
Groeneveld et al., 2017 for a survey of agent-based LUCCs). 

The examples illustrate that the dynamics of complex systems are 
directly shaped by the heterogeneity of the agents, their interactions, 
and the adaption of their behavioural rules. Decision rules in ABMs 
follow descriptive ideas observed in real decision behaviour (heuristics). 
Agents have incomplete knowledge and competences, which opens 
space for learning and innovation as well as failure. Furthermore, ABMs 
allow for an explicit consideration of true uncertainty, which eludes 
probabilistic considerations, which are only applicable in risky situa-
tions (e.g., Vermeulen and Pyka, 2016). Moreover, ABMs allow for the 
consideration of values and norms (e.g., Schlaile et al., 2018). They are 
frequently applied to study innovation, entrepreneurship, technology 
diffusion or learning in innovation networks (e.g., Morone et al., 2013, 
Pyka et al., 2019; Vermeulen and Pyka, 2018), all highly relevant topics 
in the bioeconomy transformation. This should illustrate the possibilities 
of close-to-reality modelling by ABMs focusing on the implementation of 
transformation theory together with an empirical calibration of mani-
fold parameters. It must be mentioned that in the last decade the pos-
sibilities to calibrate empirically the parameters of ABMs have improved 
substantially due to new available data sets and new methodologies for 
pattern recognition (see also section 3.3). This development is supposed 
to invalidate the reproach towards ABM being arbitrary in parametri-
zation (Fagiolo et al., 2019). 

Concerning bioeconomy modelling, a promising development is the 
amalgamation of socio-economic and environmental ABMs. Socio- 
environmental ABMs represent the behaviour and interactions of or-
ganisms, human actors, and institutions. Feedback effects between the 
various interactions are responsible for continuous adaptation and 
change processes on all temporal and spatial scales and make-up the 
enormous complexity of these systems. A better understanding of the 
highly dynamic socio-environmental systems is closely connected with 
the expectation to improve our possibilities for sustainable management 
of resources and to safeguard the integrity of ecosystems (see Ostrom, 
2009). Socio-environmental ABMs allow for a formal representation of 
complex adaptive systems and integrate qualitative and quantitative 
methods and data on system components, interactions among compo-
nents, and their responses to changes in the exogenous or endogenous 
drivers (Elsawah et al., 2020). Finally, socio-environmental ABMs, by 
their very nature of combining social and natural systems, explore in-
terdependencies among changes in controllable (e.g., policy and its in-
struments) and uncontrollable (e.g., natural system influences) drivers. 

As an example of this fast developing and highly interdisciplinary 
literature we refer to an agent-based simulation model of human- 
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environment interactions in agricultural systems by Schreinemachers 
and Berger (2011). This model might serve as an exemplary case for the 
rich possibilities of this modelling approach. At the core of their model is 
an agent-based simulation model on farm-decision making in agricul-
tural systems with the aim to better understand how agricultural tech-
nology, market dynamics, environmental change, and policy 
intervention affect a heterogeneous population of farm households and 
the agro-ecological resources these households’ command. The 
socio-economic ABM is coupled with an environmental ABM, which 
depicts the dynamics of the relevant eco-systems. 

Fig. 1 illustrates the interfaces between the socio-economic and the 
environmental ABM, typical for socio-environmental ABMs. Besides the 
respective internal dynamic loops addressing either the economic de-
cision model or the ecosystem dynamics, in socio-environmental models 
the ecosystem is impacted by the socio-economic-system and delivers 
information for agents as a basis for decision making. Due to e.g., 
different time scales in both systems, non-linearities might emerge 
responsible for true uncertainties leading to surprises or even sudden 
collapses. Berger et al. (2010), analysed the question “What could be the 
impact of climate change on land use and farm incomes?” which includes in 
its dynamic version the feedback between agricultural production and 
climate change and vice-versa between climate change and land use. 

Brown et al. (2019) describe an ABM of the European land system 
(CRAFTY-EU), to investigate the effects of human behavioural aspects of 
land management at the continental scale. Their modelling approach is 
motivated by the observation that established computational models to 
analyse land use are too narrowly focusing on biophysical changes and 
do not explore the social dynamics that are a key aspect of future land 
use. Their study shows the advantages of neither being constrained by 
equilibria nor by optimization. With exploring a range of potential fu-
tures using climatic and socio-economic scenarios, they show that de-
viation from simple economic rationality at individual and aggregate 
scales may profoundly alter the nature of land system development and 
the achievability of policy goals. Their conclusion both underlines the 
opportunities as well as the challenges of socio-environmental ABMs in 
general: the integration of socio-economic aspects of future scenarios 
have a profound impact on environmental developments and require far 
more detailed and varied treatment. 

The combination of economic and biophysical models is offering 
large possibilities for modelling the bioeconomy transformation. How-
ever, while the advantages of socio-environmental ABMs lie in their 
ability to simulate the implications of human-nature interactions 
explicitly, the methods for providing empirical support for the repre-
sentation of these interactions are still on an early stage of development 
(Smajgl et al., 2011). In their critical review on social-ecological ABMs, 
Schulze et al. (2017) emphasize the arbitrariness to communicate 
whether the models represent real systems well enough and the massive 
difficulties in the transparent and systematic analysis of the models, so 
that output is not only observed but also understood. Lamperti et al. 
(2018) show that socio-ecological ABMs extend and develop further the 
class of IAMs, which also consider coupled human and environmental 
systems as well as the one-way interrelations between the two. Because 
socio-environmental ABMs displace the standard economic models with 
ABMs, they combine the advantages of ABMs concerning the represen-
tation of learning, innovation and non-linearities with the comprehen-
siveness intended in IAMs. 

3.3. Big data and artificial intelligence support new modelling approaches 

Many of the outlined methodological developments hint on the 
immense data hunger of new modelling approaches to facilitate 
parametrization and to link socio-economic with environmental sys-
tems. Huge amounts of diverse data are becoming available that include 
both socio-economic and ecological information.1 

Therefore, big data is considered to provide important opportunities 
for improved understanding of important processes along value chains 
in agriculture and forestry and to support the explanatory power of the 
new modelling approaches. The exploitation of big data sources only 
became possible with the advent of artificial intelligence which 
empowered statistical and econometric tools to be applied on the pro-
cessing of huge amounts of structured and unstructured data. For an 
overview on the fast and dynamic development of this vibrant field in 
modern computer science in Europe, we refer to Craglia (2018). Of the 
many examples available, the United Nations Global Pulse (UN Global 
Pulse, 2017) initiative must be mentioned, which harnesses big data and 
artificial intelligence to support the achievement of the sustainable 
development goals and related policy making. Other interesting exam-
ples are the works of Rammer and Seidl (2019) that used deep learning 
to predict both local scale short term infestation risk and landscape level 
long-term outbreak, obtaining overall performances that are better than 
those achievable with conventional approaches and of Senf and Seidl 
(2020), who mapped forest disturbance regimes for Europe using the 
Google Earth Engine. 

Exploiting big data sources together with tools from artificial intel-
ligence can be used, for example, to recognize patterns (e.g., the con-
version over time of oil-based into bio-based plastics industries) hidden 
in existing industry statistics and allow for new and more precise un-
derstanding of sectoral developments. The same ideas could be used to 
detect patterns in databases describing the actors’ knowledge bases such 
as patent data. The new patterns detected in firms’ knowledge allow us 
to figure out which areas of the bioeconomy already are characterized 
by vibrant dynamics. An improved classification of knowledge fields 
relevant for the bioeconomy is essential for more accurate innovation 
policies, e.g., the support of innovation alliances in the bioeconomy. 
Something similar has already been done in other sectors, for example in 
the Cleantech Report 2020 (Cleantech Flanders, 2020) that mapped the 
ecosystem of companies dealing with innovative clean technologies in 
Flanders and built an accurate profile of all actors. To do so, data mining 
was used to analyse all patents released by Flemish companies in the 
relevant domains and to retrieve other multidimensional data such as 
financial performance, investments and funding, shareholders, company 
size, locations, target market etc. Next, machine learning was used to 
discover trends and relationships in the ecosystem. 

A common feature of models building on existing as well as emerging 
modelling approaches is that they use large sets of parameters to 
distinguish between different sectors and to weigh interrelations among 
variables. Big data and machine learning offer innovative instruments to 
substantially improve parametrization of models. Bringing together 
environmental, social and economic big data sources also very likely will 
allow us to discover unknown causalities and interdependencies among 
different variables and develop early warning signals, e.g., detecting 
upcoming crisis (Chatzis et al., 2018; Sevim et al., 2014) and other 
changes not immediately visible in conventional statistics. 

The possibilities provided by artificial intelligence, in particular 
machine learning, are likely to push forward the limits of emerging 
modelling approaches like agent-based modelling and socio- 

1 Just as an example, satellite (e.g., https://www.copernicus.eu/en or 
https://f-tep.com/) and processed data from large internet companies (e.g. 
https://cloud.google.com/public-datasets) are becoming increasingly available, 
and many of these big data sources and derived products are provided on easily 
accessible platforms (e.g., http://www.globalforestwatch.org/). 
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environmental agent-based modelling (see Dahlke et al., 2020). Espe-
cially in highly complex models with many different parameters like in 
socio-environmental agent-based models, generated output has to be 
stored and prepared in a way that it can be efficiently accessed by a 
human being or by a computer (Macal, 2016). In this context, machine 
learning tools can be used to improve the understanding of the model by 
(i) improving the understanding of model behaviours (Perry and 
O’Sullivan, 2018), and (ii) enhancing the analysis of output data to find 
important parameters, clusters, conditions, causalities, and input-output 
relationships (Edali and Yücel, 2019). 

4. Discussion and conclusion 

The bioeconomy is considered to play an important role towards 
sustainable development. Models allow for a better understanding of the 
complex context in which policy instruments intervene, are important. 
Therefore, bioeconomy models can be considered valuable instruments 
to inform policy makers about intervention possibilities and their 
consequences. 

4.1. Exploiting existing models and exploring new modelling approaches 

We show that existing modelling frameworks offer large possibilities 
for extensions and considerations for analysing short-run impacts within 
the prevailing structural composition of the socio-economic system and 
we identified possibilities for developing further the existing bio-
economy models. Whereas some key processes focusing on short-run 
adaptations of the economic system within prevailing economic struc-
tures can be included into existing models with reasonable effort, other 
key processes cannot be integrated and require the development of new 
models building on emerging modelling techniques. These key processes 
refer to societal and technological changes associated with the trans-
formation to a bioeconomy and they specifically relate to how in-
novations transform economic structures and how consumers learn and 
change their preferences and what kind of dynamics are to be expected. 
Together with those addressed in depth in in this work, there are several 
other emerging approaches that try to address complex systems and 
structural changes, and are likely to be considered as further comple-
ments to the existing models. For example, the so-called stock-flow 
consistent (SFC) macroeconomics track financial and physical flows 
through an economic system and provide a holistic approach that in-
tegrates the economic, ecological, and social spheres (for an excellent 
survey of SFC models see Nikiforos and Zecca, 2017). The justification of 
these emerging approaches comes from their long-run orientation and 
does not mean that the existing modelling classes with their higher 
levels of detail and empirical integration are to be replaced. Instead, the 
closing of the identified gaps of existing models very likely will be useful 
and supportive for a future modelling capacity which is prepared for 
analysing comprehensively a knowledge-based and sustainable 

bioeconomy. In the literature we observe two interrelated developments 
triggered by technological and methodological advances:  

i. The development of larger and more complicated models crossing 
disciplinary borders and a topical widening of models to include a 
larger variety of phenomena as well as interdependencies between 
them.  

ii. The emergence of new modelling approaches basically aiming for a 
new capture of a complex reality in models which includes, most 
importantly, the endogenous capacity of changing structures and 
qualitative developments. 

The first development so far can be considered as the most popular in 
the domain of bioeconomy modelling. Concerning short run adaptations 
of the system, this strategy leads to promising results and to a better 
understanding of the interrelated, not easily disentangled feedback ef-
fects. However, for the analysis of long-term development, characterised 
by fundamental structural changes driven by changing lifestyles, inno-
vation, or more generally learning and changing knowledge, most of the 
existing modelling approaches are insufficient because of their optimi-
zation and equilibrium design. 

The second development of applying emerging modelling ap-
proaches in the bioeconomy domain gains its attractiveness exactly from 
the limitations of the first. They focus on the endogenous drivers of the 
co-evolutionary development of social and ecological systems. Because 
of the large number of interdependencies and the immense difficulties in 
handling the complexity, the emerging modelling approaches today still 
are very much at the beginning, specifically in applications like 
modelling the bioeconomy. 

4.2. Modelling eclecticism and/or modelling cooperation 

As both developments are characterised by strong advantages but 
also by severe disadvantages, the third development trend of combining 
established and emerging modelling approaches might offer a prolific 
alternative:  

iii. combining established and emerging modelling approaches 
aiming at the exploitation of the advantages from both sides. 

Few models today are indeed combining the macro-economic 
structure of an economic system, as done in CGE models, with agent- 
based models (e.g., Niamir et al., 2020), where agents make decisions 
on the micro-level which are used as inputs in the CGE model. This 
combination of existing and emerging modelling approaches will 
improve the mutual understanding of the rather dispersed research 
communities and therefore must be considered as promising and 
important. However, the attempts existing so far are very likely suited 
neither to overcome the limitations of the established modelling 

Fig. 1. Human-environment interactions in socio-environmental models.  
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approaches nor to fully exploit the opportunities of the emerging 
modelling approaches. The reason is that the structures of the systems 
analysed are fixed and change is not the result of the interactions among 
agents and among agents with their natural environment. To avoid this 
loss of modelling potentials, we emphasize a fourth trajectory for future 
model development:  

iv. model cooperation to exploit the benefits of established and 
emerging modelling approaches. 

For the analysis of short-term temporal developments within stable 
structures, the fine-grained established modelling approaches are well 
suited to analyse future bioeconomy transition processes. However, the 
application of the established modelling approaches should reflect from 
the very beginning the shortcomings and limitations concerning their 
application with respect to some of the most urgent questions to be 
asked today, namely those dealing with transformation. Because of 
endogenous structural changes due to innovation and changing con-
sumer behaviour, the advantage of a detailed description cannot be 
maintained when it comes to the analysis of long-term development. 
This is the place, where the emerging modelling approaches can exert 
already today their full power. The emerging modelling approaches hint 
on the drivers of these fundamental changes responsible for the non- 
linearities and disruptive changes characteristic for and affecting 
socio-ecological long-term development. 

From a theoretical point of view, an equilibrium state of an estab-
lished model is one possible outcome of a complexity model. However, 
in a long-run analysis it is not very likely that the system under inves-
tigation remains in this equilibrium even without an exogenous shock. 
But, as it will take a long period of intensive model development until 
the emerging modelling approaches will be able to describe economic 
systems with the same level of details characteristic for established 
models, in the interim period, model cooperation to exploit the advan-
tages of established AND emerging models is the most promising strat-
egy, as many important decisions to improve on sustainability cannot be 
postponed. 

To summarize, we argue for a modelling approach eclecticism, where 
we combine established and emerging modelling approaches coopera-
tively depending on the questions which are to be analysed with the 
model. This asks for a better description of modelling targets, a sound 
reflection on the meaning of time horizons and a closer cooperation 
between the different research communities. The description of the 
modelling targets as well as the determination of time horizons will 
benefit from the developments in big data and artificial intelligence 
from which we expect valuable guideposts for designing future model-
ling strategies. 
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Montañola-Sales, C., Ormerod, P., Root, H., Squazzoni, F., 2019. Different modelling 
purpose. J. Artif. Soc. Soc. Simulat. 22 (3), 6. 

Eggers, J., Lindner, M., Zudin, S., Zaehle, S., Liski, J., 2008. Impact of changing wood 
demand, climate and land use on European forest resources and carbon stocks during 
the 21st century. Global Change Biol. 14, 1–16. https://doi.org/10.1111/j.1365- 
2486.2008.01653.x. 

El-Chichakli, B., von Braun, J., Lang, C., Barben, D., Philp, J., 2016. Policy: five 
cornerstones of a global bioeconomy. Nature 535, 221–223. https://doi.org/ 
10.1038/535221a. 

Elsawah, S., Filatova, T., Jakeman, A.J., Kettner, A.J., Zellner, M.L., Athanasiadis, I.N., 
Hamilton, S.H., Axtell, R.L., Brown, D.G., Gilligan, J.M., Janssen, M.A., Robinson, D. 
T., Rozenberg, J., Ullah, I.I.T., Lade, S.J., 2020. Eight Grand Challenges in Socio- 
Environmental Systems Modeling Socio-Environmental Systems Modelling, vol. 2, 
p. 16226, 2020.  

European Commission, 2020. Strategic Foresight Report. Charting the Course towards a 
More Resilient Europe. https://ec.europa.eu/info/sites/info/files/strategic_foresigh 
t_report_2020_1.pdf. 

Fagiolo, G., Guerini, M., Lamperti, F., Moneta, A., Roventini, A., 2019. Validation of 
agent-based models in economics and finance. In: Beisbart, C., Saam, N. (Eds.), 
Computer Simulation Validation. Simulation Foundations, Methods and 
Applications. Springer, Cham. https://doi.org/10.1007/978-3-319-70766-2_31, 
2019.  

Flanders, Cleantech, 2020. Cleantech Report, 2020. https://cleantechflanders.com/sites 
/cleantechflanders/files/2020-04/CTR_2020_ENG.pdf. 

Frank, S., Havlík, P., Stehfest, E., van Meijl, H., Witzke, P., Pérez-Domínguez, I., van 
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