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A B S T R A C T   

Forests provide a wide range of ecosystem services, and ecosystem models can be applied to assess the contri
bution of different forest management strategies to climate mitigation and adaptation. Complex model output 
and trade-offs between environmental, economic, and social sustainability dimensions are difficult to convey. To 
facilitate stakeholder communication, we developed composite indicators based on ten ecosystem service in
dicators obtained from ecosystem model simulations representing 19 forestry management strategies across three 
ecoregions and climate scenario projections in Sweden. Eight alternative composites were generated around a 
central framework addressing sustainability aspects in terms of wood production, preservation of biodiversity, 
climate change mitigation and adaptation (risk management). A combination of principal component analysis, 
exploratory factor analysis, Cronbach’s coefficient alpha, and hierarchical cluster analysis was applied to account 
for the statistical relationships between indicators. Z-score normalization was superior to min-max normalization 
in capturing differences among management strategies. Two weighting schemes were applied, based on policy 
prioritizations between sub-components that reflected 1) current policy with an equal emphasis on production 
and biodiversity, and 2) a stronger focus on nature protection. Equal emphasis generated a larger range of scores 
(76.0 ± 21.2) than the focus on nature protection (32.0 ± 5.8), as the latter would provide less production 
benefits and thereby fewer trade-offs between production and other aspects. The final scores of the 19 man
agement strategies fell within a variance boundary of each other, showing their contribution to different policy 
targets and the usefulness of combining strategies at the landscape level. The composites displayed agreement 
across regions and scenarios. They indicated that a shift from even-aged conifer monocultures towards a com
bination of continuous cover, broadleaf-mixture, and unmanaged would work well for balancing goals under 
changing climate conditions.   

1. Introduction 

Forestry comprises a significant portion of Sweden’s economy, 
contributing 10% of the tree products traded globally (Keskitalo et al., 
2016). Forest ecosystems cover 28 million hectares, which is 69% of the 
country’s total land area. Over 90% of that land is currently classified as 
productive stands (Lindahl et al., 2017). Standing volume for Swedish 
forests is comprised of Norway spruce (Picea abies) (42%) and Scots pine 
(Pinus sylvestris) (39%), motivated by the intersection of silvicultural 
preferences, economic pressures, and tradition (Lindahl et al., 2017). 
Sweden’s biodiversity has declined over time in tandem with the tran
sition from extensive farmland to intensive forestry (Felton et al., 2016; 
Angelstam et al., 2020). Dwindling biodiversity in managed and un
managed landscapes threatens ecosystem function and magnifies 

biosphere vulnerability to disturbance events, pests, pathogens, and 
climate change (Hooper et al., 2012). The Swedish Forestry Act regu
lates profit and sustainability goals, equally emphasizing wood pro
duction and environmental conservation (Lindahl et al., 2017). Owners 
adhere to management requirements, but fear of profit losses has slowed 
the implementation of more sustainable practices (Lidskog et al., 2013; 
Lindner et al., 2014). A significant portion of this inaction is attributed 
to a deficiency in the knowledge and comprehension needed to make 
decisions (Klapwijk et al., 2018). 

Sweden’s climate is projected to warm by 2 to 7 ◦C by the end of the 
century, altering precipitation and increasing extreme weather events 
(Kjellström et al., 2014; IPCC, 2021). Warmer winters will lengthen the 
growing season and affect ecosystem composition, species range, and 
damage from pests and pathogens (Jönsson et al., 2009; Seidl et al., 
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2011). These factors combine to put forestry-related ecosystem services 
at-risk (Felton et al., 2016). In response, the Intergovernmental Panel on 
Climate Change (UNG, 1988), the Intergovernmental Science-Policy 
Platform on Biodiversity and Ecosystem Services (Díaz et al., 2015), 
and the Swedish Forestry Agency (Pettersson et al., 2017) stress the 
importance of changing forest management strategies to 1) incorporate 
ecosystem service (ES) benefits beyond biomass production, 2) meet 
Sweden’s environmental objectives (EO), and 3) adhere to the United 
Nation’s Sustainable Development Goals (SDGs) for holistic social and 
environmental improvement. Despite synergies, these three initiatives 
distribute focus between ecological and social priorities differently, 
adding confusion to stakeholders’ decisions and resulting in Sweden not 
being on track to meet any of them (Angelstam et al., 2020). 

Humans exist within the natural world’s boundaries and depend on 
its biodiversity, ecosystem functions, and services (Naeem et al., 2012; 
Folke et al., 2016). Recent population growth and economic expansion 
demand more energy and materials from the environment than it can 
provide (Díaz et al., 2015). In forested ecosystems, the focus has been on 
increasing yields and maximizing profits, leading to a quantifiable 
degradation of biodiversity and ecosystem function (Triviño et al., 2015; 
Díaz et al., 2019). Sustainable development is defined as “meeting the 
needs of present generations without compromising the ability of future 
generations to meet their own needs,” also described as human well- 
being (HWB) (WCED, 1987). This can be separated into the underly
ing dimensions of environment, society, and economy. There is a clear 
connection between sustainable forest management and reducing CO2 
emissions driving climate change (Rehman et al., 2021). Synergies and 
trade-offs within multi-use forestry include tensions between produc
tion, climate change mitigation, risk management, and biodiversity. 
Together these groups capture different key aspects of ecosystem-human 
well-being (EHWB). 

Lagergren and Jönsson (2017) used a dynamic ecosystem model to 
determine the effect of different combinations of management practices 
for multiple regions throughout Sweden while balancing economic, 
environmental, and social values in a climate change context. While the 
results are valuable, their format poses a challenge to the non-scientific 
community to interpret (Angelstam et al., 2020). Composite indicators 
(CIs) help represent complex phenomena, mathematically simplifying 
multidimensional concepts into a single value (Sarra and Nissi, 2020). 
CIs are widely used and help inform decisions to meet policy targets for 
sustainability (Singh et al., 2009). To handle potential subjectivity 
during construction (OECD, 2008), one must understand the context in 
which the CI is intended and evaluate different methodologies to select 
the best approach for a specified purpose (Alam et al., 2016). 

This study aims to construct a CI for the modeled results from 
Lagergren and Jönsson (2017) to capture the complexity of ecosystem 
dynamics while conveying recommendations to balance environmental, 
economic, and social sustainability. The scope encompasses three 
ecological regions throughout Sweden for future climate projections to 
the end of the century, at the landscape scale, by addressing the 
following questions: 1) Which CI methodology best represents modeled 
differences between management strategies at the landscape scale? 2) 
Using the developed CIs, which forest management strategies for pro
duction stands are recommended across regions in Sweden to fulfill a 
range of sustainability goals? Do these recommendations change over 
time under different climate scenario projections? 

2. Materials and methods 

Sweden ranges between 55 ̊N and 69 ̊N and 10 ̊E to 24 ̊E, and historic 
alternating glaciation-deglaciation periods have generated moraine till 
soils throughout the country (Rytter et al., 2016). This study is based on 
three ecoregions in northern, central, and southern Sweden, reflecting 
northern boreal, southern boreal, and boreo-nemoral conditions, 
respectively (Ahti et al., 1968). 

2.1. Model-based ecosystem indicators 

Ecosystem modeling allows for evaluating forest management stra
tegies through time at varying spatial scales, putting different synergies 
and trade-offs into perspective. Model output can be designed to focus 
on specific proxies and measures for ecosystem components (Wood 
et al., 2018). The Lund-Potsdam-Jena General Ecosystem Simulator 
(LPJ-GUESS) (Smith et al., 2001; Smith et al., 2014) is a dynamic global 
vegetation model (DVM) that can account for biogeochemical ecosystem 
processes with differing management schemes. LPJ-GUESS dynamically 
captures forest vegetation structure at landscape, regional, and global 
scales as its bottom-up design links ecosystem processes. Required input 
includes temperature, precipitation, incoming solar radiation, soil 
properties, and atmospheric CO2 concentrations (Smith et al., 2001). 
Vegetation represented by plant functional types (PFTs) captures the 
high variability of plant species through groupings of shared life- 
strategy, bioclimatic niche, structural type, and biogeochemical char
acteristics (Ahlström et al., 2012). Structural dynamics are organized 
into stands representing the overall modeled area for a grid cell sepa
rated into a specified number of patches with a 0.1 ha extent. Patches 
have a random sampling of vegetation cohorts, consisting of several 
PFTs that can survive in the area based on environmental conditions. 
Vegetation composition is defined from resource competition, such as 
canopy properties’ effect on incoming shortwave radiation (Smith et al., 
2001). The model’s suitability to capture climate and vegetation trends 
across Sweden has been evaluated and validated by numerous studies (e. 
g., Morales et al., 2005; Ahlström et al., 2012; Lagergren et al., 2012). 

Lagergren and Jönsson (2017) ran LPJ-GUESS for a total of 19 forest 
management schema. Sixteen varieties of even-aged forestry (EAF), two 
continuous cover forestry (CCF), and unmanaged (Fig. 1) were simu
lated with 50 patches each to capture different stand ages. EAF involves 
repeated planting of seedlings followed by clear-cutting after a set 
period of growth, varying by four species compositions accounting for 
the majority of trees used in Swedish forestry: 1) Picea abies (Norway 
spruce), 2) Pinus sylvestris (Scots pine), 3) a boreal-broadleaf mix of 
Betula pendula, Betula pubescens, Popolus tremula, and Alnus incana 
(birch, aspen, and grey alder), and 4) a nemoral broad-leaf mix of 
Quercus robur, Fagus sylvatica, and Fraxinus excelsior (oak, beech, and 
ash). The density of planted seedlings and rotation period length 
depended on soil quality and were represented to allow natural regen
eration and composition changes based on environmental conditions. 
Two rotation periods, “normal” and “short,” were explored. An addi
tional parameter is pre-commercial thinning (PCT) intensity, which 
removes naturally established trees from stands, with “high” and “low” 
tolerances to natural regeneration implemented. Two CCF schemes 
varied based on regularly occurring interval harvesting strategies: 1) 
selective thinning throughout the stand and 2) targeted cutting above a 
maximum diameter threshold. Both CCFs had a minimum diameter 
preventing any trees from being cut, and an upper limit beyond which 
trees were universally cut. The CCF simulations were dominated by 
shade-tolerant species, predominantly Picea abies in boreal conditions 
and Fagus sylvatica in nemoral conditions (Lagergren and Jönsson, 
2017). Simulations representative of unmanaged forests were only 
influenced by environmental constraints on PFTs and naturally occur
ring disturbance events. 

A bias-corrected representative sub-ensemble of regional climate 
models (RCMs) from EURO-CORDEX (Kotlarski et al., 2014) provided 
daily input climate data for RCP8.5 (1951–2099) at a 50 km spatial 
resolution for nine grid cells per ecoregion. A spin-up period with nat
ural establishment and stochastic disturbance events was run before 
management implementation. This ensured stable conditions for the 
scenario model runs, for which three periods of time (P1, P2, and P3 for 
2000–2019, 2040–2059, and 2080–2099, respectively) offered a way to 
capture inter-annual variations in climate conditions. A benefit of using 
RCP8.5 with this temporal depiction scheme is that each period also 
represents end-of-century conditions under different climate scenarios. 
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RCP2.6 at the year 2100 is analogous to P1 under RCP8.5, with mid- 
century RCP8.5 (P2) comparable to end-century RCP4.5 and RCP6.0 
(Moss et al., 2010; IPCC, 2014). Variation in forest soil fertility, which 
affects production yield, was represented with three site quality classes 
(SQCs): low, medium, and high fertility. SQCs were incorporated into 
the model by scaling a proxy parameter (radiation-use efficiency). Sub- 
modules to incorporate forest management, economy, risk of storm 
damage, and biological indicator values were applied (Lagergren et al., 

2012, Jönsson et al., 2015). 
Ten ES indicators were generated as output from LPJ-GUESS runs 

from each of the four sub-ensemble RCMs. 1) Harvested biomass for both 
timber and pulp from the stem pool. 2) Net income calculated from 
established market values averaged over ten years for set dimensions 
and size of cut timber at harvest stage per ha. 3) Storm damage resis
tance derived from a sensitivity index based on tree proportions, PFT 
sensitives, neighboring stands, and root system damage from soil freeze. 

Fig. 1. The 19 forest management strategies (Lagergren and Jönsson, 2017) included even-aged forestry with four species compositions subjected to two thinning 
intensities and two rotation period lengths. Continuous cover forests are cut in 15-to-30-year intervals, with CCF1 having a higher harvest strength (40%) than CCF2 
(20%). Unmanaged was subject to natural establishment and disturbances. 

Fig. 2. Stepwise process for CI development. Extended indicator values (Fig. 4) were used in multivariate analysis (2.2.2.). The following CI structures were based on 
averaged values that had been normalized (2.2.3.), weighed (2.2.4.), and aggregated (2.2.5.). The final CI structure was selected through systematic evaluation 
(2.2.6.) and used to evaluate management practices for regions and periods (3.4.). 
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LPJ-GUESS already outputs several variables with information on car
bon pool state, which generated 4) total carbon stored in biomass, 5) 
annual carbon sequestration in biomass, and 6) annual carbon seques
tration in soil. Finally, a sub-module for forest biodiversity produced 7) 
the fraction of broad-leafed trees in a stand, 8) the number of old trees 
above a regionally dependent age threshold, 9) the number of old broad- 
leafed trees, and 10) the amount of stem (woody) litter. Old trees, old 
broad-leafed trees, fraction of broad-leafed forest, and stem litter acted 
as proxy measures for biodiversity as specified by Sweden’s EOs. Details 
on sub-ensemble cluster development, SQCs, management scheme 
implementation, and ES indicators used can be found in Lagergren and 
Jönsson (2017). 

2.2. Development of composite indicators 

Individual indicators can be combined into a single value repre
senting the multidimensional phenomenon as a composite indicator (CI) 
(OECD, 2008; Singh et al., 2009). CIs are widely applied in policy
making, e.g., to facilitate adaptive change (Booysen, 2002; Zhou et al., 
2012; El Gibari et al., 2019). This study followed the guidelines of OECD 
(2008) (Fig. 2): 1) Develop a theoretical framework of the CI. 2) Select 
indicators to address different CI dimensions and perform initial data 
formatting. 3) Normalize individual indicators so different units do not 
conflict. 4) Perform multivariate analysis to evaluate combinations of 
indicators. 5) Weight sub-components based on two policies. 6) Aggre
gate sub-components into final CI scores based either on the theoretical 
framework or a combination of the multivariate analyses. 7) Evaluate 
final CIs. 

2.2.1. Framework and theoretical sub-components 
A theoretical framework was generated to link ES indicators to EOs 

and SDGs (Fig. 3). Goals from EOs and SDGs related to each type of ES. 
When combined in the CI, they captured ecosystem-human well-being 
(EHWB). 

A quality assessment and summary table of descriptive statistics 
(mean, minimum, maximum, and standard deviation) for each indicator 
was generated for each of the ecoregions and periods concerned, in 
addition to an overall average for combined regions and periods (see 
Appendix A). 

2.2.2. Selection of indicators and data formatting 
In this study, the raw output from LPJ-GUESS included ten ES in

dicators and 19 management strategies for each of three site quality 
classes (SQCs) for three regions, covering nine grid cells each. Data for 
three separate 20-year time intervals across four model runs driven by 
four different climate data sets were used. The data, stored in a 10 × 19 
× 3 × 3 × 9 × 3 × 20 × 4 array, was imported into MATLAB (R2020a, 
The Math Works Inc., 2020). SQCs for the grid cells in the same period 
and region were combined into a single representative value using the 
weighted mean based on area-specific average SQC level (Table 2 in 
Lagergren & Jönsson, 2017). Averaged SQCs reduced the number of data 
dimensions and represented a reasonable simplification by having uni
form production potentials within each region (Gan et al., 2017). For the 
CI development, an array of 10x19x3x3x9x4 (ES indicator, management 
strategy, region, period, grid cell, RCM) was used to address un
certainties between the RCMs (n = 61560 data points). For the final CI 
construction, a data set averaged across regional grid cells and RCMs set 
was formed as an array of 10x19x3x3 (ES indicator, management 
strategy, region, period), separated into nine output files, corresponding 
to three regions and three periods (n = 1710 data points, Fig. 4). The 
modeled data did not include any missing values or erroneous outliers, 
as all data points conveyed relevant information concerning the given 
period and region’s associated management strategies. 

2.2.3. Normalization 
Normalization adjusts variables with different units to a common 

scale (OECD, 2008; Singh et al., 2009), enabling the equal contribution 
of indicators at all stages of CI construction (Ebert and Welsch, 2004). 
While all ten indicator variables have carbon at the core of their mea
sures, their units and distributions differ, which necessitate normaliza
tion prior to comparative statistical analysis (2.2.4.) and aggregation of 
the final CIs (2.2.5.). It was important to keep statistical outliers and 
preserve distributions for each indicator as representative values for 
their affiliated management strategies. 

Two different normalization types, Z-score and min–max normali
zation, were applied to the data to determine which better represented 
modeled ecological processes for constructing CIs (OECD, 2008). Z-score 
standardization shifts the mean of each indicator to zero and the stan
dard deviation to one. Values were represented as distances from the 
mean in units of standard deviation (Eq. (1)): 

Fig. 3. Overview of links between forest ecosystem services (ES), environmental objectives (EOs, Swedish EPA, 2012), and sustainable development goals (SDGs), 
contributing to ecosystem-human well-being (EHWB). 
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Z =
xm − x

s
(1)  

where xm is the raw value for the m-th management strategy, x is the 
mean of all indicator values, and s is the standard deviation. 

Min-max normalization (MM) shifts the range of all indicator values 
to between zero and one. MM preserves the shape of each indicator’s 
distribution and is especially good for variables with raw values on a 
small scale (Brunet, 2002). Values are calculated by finding the distance 
each management value is from the smallest value and dividing by the 
range (Eq. (2)): 

MM =
xm − min(x)

max(x) − min(x)
(2)  

where xm is the raw value for the m-th management strategy, min is the 
minimum value for the i-th indicator, and max is the maximum value. A 
consequence of being based on each indicator’s range is the possible 
distortion caused by outliers as they are drawn closer to the mean. Other 
normalization approaches were considered (Student’s t-statistic, Stu
dentized residual, Standardized moment, and Coefficient of variation) 
but were not suitable for this modeled data as they would require 
regression estimations or use of hypothesized population averages, 
which would introduce unnecessary complexity (Alam et al., 2016; 
Greco et al., 2019). 

2.2.4. Hybrid sub-components 
The theoretical framework was compared with a hybrid framework, 

generated through multivariate analysis, as the multidimensional nature 
of the indicators benefited from mathematical insights of nested com
ponents (Brunet, 2002; Hair et al., 2006). The ten ES indicators of 
extended LPJ-GUESS output (3.2.) were sorted based on mathematically 
derived sub-components following Booysen (2002) and El Gibari et al. 
(2019). This step also served as validation that the ten indicators were 
proven to be meaningful and not just arbitrarily selected (Greco et al., 
2019). 

Principal component analysis (PCA), exploratory factor analysis 
(EFA), Cronbach’s coefficient alpha (C-alpha), and hierarchical cluster 
analysis (HCA) were used, as the application of several multivariate 
techniques provide greater understanding regarding data structure (Gan 
et al., 2017). Both PCA and HCA are types of linear non-parametric 
unsupervised machine learning, meaning the dataset’s structure is 

being analyzed, not predicted. PCA is solely based on statistical vari
ance, while HCA considers variable similarity. EFA expands upon PCA 
by finding inferred and unobserved latent variables not directly 
measured by the ten modeled indicators. At the same time, C-alpha 
represents how well all indicators measured the same phenomena 
judging by how their behavior changes if each variable were excluded. 
All multivariate analyses were done with z-score normalized data, as the 
wide-ranging variance and different units of indicators would otherwise 
introduce bias. 

2.2.4.1. Principal components analysis. PCA interprets the variation be
tween variables by forming principal components (PCs) that are based 
on correlation while preserving the total variation (Dunteman, 1989). 
The greatest amount of variance is retained within the first PC, followed 
by the second, and so forth in descending order. Three rules were 
applied to distinguish between significant and random variability: the 
proportion of variance test (PoVT), Cattell’s scree test (CST), and Kaiser 
criterion (KC). The modeled nature of the dataset supported the use of 
multiple stopping rules to determine the appropriate number of PCs 
(Alam et al., 2016; Greco et al., 2019). PoVT identified significant PCs 
based on a cumulative variance being captured, ranging from 70 to 80%. 
CST is similar but used scree plot visualization to identify the PCs to 
retain, those that fell before the “elbow” of the variance proportion 
curve (Martin and Maes, 1979; OECD, 2008). KC discarded all PCs with 
squared eigenvalues < 1.0 (as PCs should at minimum explain the 
variance of one individual indicator) (Yong et al., 2013). A low corre
lation between PCs signified that the component suitably captured the 
statistical dimensions of the original indicators and were mathemati
cally valid groupings as CI sub-components (Hair et al., 2006). PCA was 
run five times: once for all extended data and four additional times for 
the regions and periods with the most contrast (Nemoral vs. N. Boreal 
and 2000–2019 vs. 2080–2099). 

2.2.4.2. Exploratory factor analysis. EFA uses a specific rotation model 
to explain the association between indicators with the fewest latent 
components (Harman, 1976). It creates underlying components that 
could not be captured in the original data or directly observed by 
maximizing variance on a fixed number of reduced loadings (Yong et al., 
2013). Univariate and multivariate normality, and a linear relationship 
between factors and variable covariance, were checked before per
forming the EFA. Confirmation of satisfactory conditions was achieved 

Fig. 4. Data management, output from LPJ-GUESS were averaged to produce indicator values for three regions and time periods. An extended data set used in 
multivariate analysis was produced by combining the site quality class (SQC) values (low, medium, and high) (n = 61560), while the averaged data set used for forest 
management evaluation included additional averaging of the nine grid cells per region, and four RCM runs (n = 1710). 
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with Bartlett’s Test of Sphericity (BTS, p ≤ 0.05), which checks for an 
identity matrix, and Kaiser-Meyer-Olkin (KMO ≥ 0.5) measure of sam
pling adequacy between variables through the strength of their partial 
correlations. PCA was used to extract factor loadings, equivalent to the 
PCs determined by PoVT, CST, and KC stopping rules. Factors were then 
rotated to maximize variance and identify how loadings differentiate 
from original indicators (Yong et al., 2013). Varimax rotation was used 
(Kaiser, 1958). It is the most commonly used orthogonal rotation that 
minimizes the number of indicators with high loadings per factor while 
assuming that factors are uncorrelated (Rummel, 1988; DeCoster, 
1998). Final factor loadings captured the strength of correlation be
tween the original indicators and factor components to inform sub- 
component assignment (Yong et al., 2013). EFA was run the same 
number of times as PCA. 

2.2.4.3. Cronbach’s coefficient alpha. C-alpha was included as it mea
sures the internal consistency of all ten indicator variables (Cronbach, 
1951). As a form of reliability analysis, it evaluated the relation among 
indicators by comparing their independent variability and their corre
lations. C-alpha does not assume unidimensionality, but it measures how 
related a group of variables are by checking for separate latent clusters 
(Hair et al., 2006; OECD, 2008). The cut-off point for an acceptable C- 
alpha is debated, but Nunnally’s (1979) of 0.7 is considered adequate 
(OECD, 2008). It represents a suitable balance between being too lenient 
or strict when applied to indicator values sourced from an ecosystem 
model (El Gibari et al., 2019). The range of correlation values allowed 
up to three indicator groupings to be determined, matching the number 
of theoretical sub-components. High correlation (C-alpha = 1) is asso
ciated with capturing the same latent object well, so sub-component 
groupings were identified by dividing between highly correlated, 
moderately correlated, and uncorrelated (C-alpha = 0) indicator pair
ings (OECD, 2008; Singh et al., 2009). 

2.2.4.4. Hierarchical cluster analysis. HCA, also known as tree clus
tering, created hybrid sub-component groups based on a mathematical 
hierarchy of increasingly nested classes (OECD, 2008; Kaufman and 
Rousseeuw, 2009). Unique groups with homogeneous members were 
delineated with distances, which equated to degrees of similarity or 
dissimilarity between variables (Späth, 1980). Indicator values clustered 
together were most akin to one another within the grouping while most 
different from other groupings. The clustering algorithm regulated how 
space between clusters was measured, known as the linkage criteria 
(Szekely and Rizzo, 2005). Ward’s method (Ward, 1963), which de
termines links based on minimum variance (sum of squared deviations 
from cluster mean), opposed to distance or weight-based algorithms, 
was the criterion used. Values with the least variance between each 
other were considered most similar. It yielded the strongest agglomer
ative (bottom-up) coefficient for average group linkage than other 
criteria, best capturing the clustering structure for the modeled in
dicators (Kaufman and Rousseeuw, 2009). Results were visualized as a 
dendrogram to represent the distance (height) between cluster groups. 
Groupings of clusters into sub-components were determined based on 
minimum height relative to the three components desired (i.e., Pro
duction, Biodiversity, Climate Change Mitigation and Risk Managment 
(CCMRM)). As with PCA and EFA, five runs were made on all extended 
values and subsets with contrasting spatial and temporal conditions. An 
additional five clusters were done for averages of each normalization 
approach, totaling ten between z-score and MM for averages and sub
sets. Another 18 runs were performed on averaged values for both z- 
score and MM normalizations on all region-period combinations. HCA is 
the only multivariate approach where MM normalization was suitable to 
include. Averaged indicator values for individual regions and periods 
were also clustered for each normalization approach. 

2.2.5. Weighting 
Weights can be applied to individual indicators, sub-components, or 

both (Gan et al., 2017). However, explicitly weighing individual in
dicators is only recommended when each captures a distinct phenome
non (Alam et al., 2016). The second method was selected as the 
individual indicators displayed some correlation, and as the three sub- 
components informed differences in goals and ES. Mathematical ap
proaches to account for and offset connections (El Gibari et al., 2019) 
were not used, as the sub-components’ construction acted as implicit 
weighting and satisfied the correlation concern (Attardi et al., 2018). 

A theoretical nature protection (NP) weight was employed and 
compared with equal (E) weights. The Swedish Forestry Act specifies 
that production and conservation efforts are given equal priority, so 
weighing each sub-component the same would satisfy these policy 
conditions (Lindahl et al., 2017). Critique from non-government orga
nizations and other reports argue the merits of transitioning to valuing 
ecosystem biodiversity conservation and climate change mitigation over 
harvestable forest products (Tollefson, 2018; Díaz et al., 2019; Angel
stam et al., 2020). NP weighing consisted of multiplying sub- 
components by a percentage to offset Production ES. Biodiversity and 
CCMRM were each multiplied by 0.40 while Production was by 0.20. 
The NP scheme was skewed to give greater weight to sub-components 
representing nature protection ES, allowing the exploration of a sce
nario where policy is altered. 

2.2.6. Aggregation 
The three weighted sub-components were averaged together to yield 

CI scores (Alam et al., 2016). Due to multi-dimensional correlation be
tween sub-components, multiplication was selected instead of summing 
(OECD, 2008; Gan et al., 2017). Linear aggregation - additive or mul
tiplicative - is recommended for modeled ES values (Singh et al., 2009; 
Alam et al., 2016). Linear is ideal when raw units are the same, and 
while the units vary, the core of each indicator is carbon. As LPJ-GUESS 
output was averaged, and every value is representationally significant, 
linear techniques account for each value without worry that they will 
skew or produce misleading CI scores (Greco et al., 2019). 

A total of 1368 CI scores were produced: 152 values for 19 man
agement strategies across eight CI structures—each with two normali
zation schemes [z-score and MM], two sub-component groupings 
[theory and hybrid], and two weighting schemes [E and NP] (2x2x2)— 
done over three regions and three periods (19x8x3x3) (Fig. 5). 

2.2.7. Systematic evaluation 
Evaluation of construction decisions is recommended (OECD, 2008; 

Singh et al., 2009; Alam et al., 2016). The process addresses the first 
research question by selecting a CI structure. CI scores for each aspect of 
the development process (normalization, sub-component grouping, and 
weighting) were averaged and compared through visualization and 
unpaired samples t-testing (OECD, 2008). Evaluating aspects with in
dividual statistical tests increased comprehension, useful for structural 
decisions as each aspect was only compared to itself instead of simul
taneously against all other aspects as would occur with ANOVA (Burgass 
et al., 2017). Averaged values were used for each comparison because 
the ideal CI would be representative across all regions and periods. CI 
aspects were selected based on the statistical tests, and nature protection 
and equal weighting schemes were purposefully retained to explore both 
management priorities. 

The final CI structure was examined using averages with E and NP 
weights for regions and periods. The nine combinations of the three 
regions and three periods were averaged into a single score for each of 
the 19 forest management practices, with standard deviation indicating 
spatial and temporal variation. Color was used to visualize the contri
bution of each sub-component to a management strategy’s CI value. The 
fractional proportion of a sub-component relative to the CI value was 
calculated and then min–max normalized (Eq (2)), so each sub- 
component had a value between zero and one. When plotted together 
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in an RGB color space, this generated a color, denoting the trade-offs 
each management approach has concerning the ES goals represented 
by the respective sub-components. Management scores were sorted in 
descending order for all regions and periods for E and NP weight 
schemes. Regional and period averages of both E and NP weighting 
provided four additional sets of sorted CI scores. Averaging and sorting 
CI scores of forestry management strategies between regions, periods, 
and combined regions and periods answered the second research ques
tion by identifying management choices for forest owners based on 
policy priority and climate conditions. 

3. Results 

The results cover the development and evaluation of CIs and their 
use in the evaluation of management options. 

3.1. Development of composite indicators 

The theoretical sub-components were created by grouping the ten ES 
indicators into three sub-components that factored into provisioning, 
regulating, and supporting services (Table 1). A total of 39 multivariate 
analyses were carried, and the number of times each indicator was 
allocated to a specific sub-grouping was counted (Table 1). Final hybrid 
sub-components were determined by the indicators assigned to each 
grouping the most. Compared to theoretical ES-groupings, biomass 
sequestration shifted from CCMRM to Production. Carbon storage 
moved to Biodiversity. 

Normalized indicators were visualized using heatmaps, and axes 
were paired with HCA dendrograms to elucidate clustering changes over 
regions and periods (Fig. 6). Z-scores presented a mean of 0 and standard 
deviation of 1 for all regions and periods averaged together, with a range 
of 3.8 from − 1.7 to 2.1. Within regions or periods, the range only varied 
by 0.1, while a difference of 1.8 between the region range and period 
range existed. MM had a range of 1 from 0 to 1(M = 0.4, SD = 0.3). The 
mean and standard deviation did not vary across or within regions and 
periods. 

For all PCA runs, PoVT, CST, and KC supported three significant PC 
loadings equivalent to Production, CCMRM, and Biodiversity groupings. 
Three PCs captured 70.7% of the cumulative variance while having 
squared eigenvalues > 1.0 (Fig. 7a). Production (PC1) was assigned 
harvested biomass, net income, and biomass sequestration from having 
significant eigenvalues ≥ ±0.5. Storm resistance and carbon storage 
were grouped as CCMRM (PC2), while soil carbon sequestration, frac
tion of broad-leafed forest, old trees, old broad-leafed trees, and storm 
litter were allocated to Biodiversity (PC3). The criteria for performing 
EFA were met (BTS = 2.22e-16, KMO = 0.59). Factor loadings were 
derived from significant PCs; varimax rotation for all extended data 
assigned harvested biomass, biomass sequestration, and net income to 
Production (MR1) (Fig. 7b). Biodiversity (MR2) was given carbon stor
age, storm litter, and old trees, while CCMRM (MR3) had fraction of 
broad-leafed forest, old broad-leafed trees, storm resistance, and soil 
carbon sequestration. 

The internal consistency was moderately robust (C-alpha = 0.71), 
indicating covariance between individual indicator values. Separation 
into three sub-components based on high, moderate, and low correlation 
with total was done (Fig. 7c). Harvested biomass, net income, carbon 
sequestration in living biomass, and fraction of broad-leafed trees 
showed the highest correlation and were designated as Production. Old 
trees, old broad-leafed trees, and the amount of stem litter had a mod
erate correlation and were assigned to Biodiversity. Soil carbon 
sequestration, carbon storage, and storm resistance presented a low 
correlation with the total and represented CCMRM. The analysis per 
region and period provided insignificant results (C-alpha ≤ 0.68). 

Indicator similarity was determined by HCA cluster groupings. In 
total, 28 clusters were analyzed, delegating harvested biomass, biomass 
sequestration, and net income as Production. Carbon storage, storm 
litter, and old trees were assigned to Biodiversity. ES indicators for storm 
resistance, fraction of broad-leafed forest, old broad-leafed trees, and 
soil carbon sequestration were CCMRM. The same sub-components were 
identified with the extended values (Fig. 7d) and the averaged values, 
combined across all regions and periods, using z-score normalization 
(Fig. 6b). Averaged MM normalization was similar but sorted old broad- 

Fig. 5. Eight CI structures based on data for 19 management strategies over three regions and three periods were developed to evaluate the effect of normalization 
methods, sub-component groupings (determined with theoretical background [TSC] or a hybrid with multivariate analysis [HSC]), and weighting (reflecting an equal 
balance between production and protection, or enhanced nature protection). 

Table 1 
Ten modeled ecosystem service (ES) indicators were sorted into three sub-component groupings: The theoretical groupings , , and 
were based on ES classification, Environmental Objectives (EOs), and dimensions of sustainability (SDGs). Hybrid groupings of indicators , 

, and emerged through multivariate analysis of extended data with principal 
component analysis (n = 5), exploratory factor analysis (n = 5), Cronbach’s alpha for internal consistency (n = 1), and hierarchical cluster analysis (n = 28). Final 
hybrid groupings were based on how many times each indicator was assigned to a sub-component (max 39).  
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leafed trees as Biodiversity (Fig. 6a). 

3.2. Systematic evaluation of composite indicators 

Normalized values with theoretical and hybrid sub-component 
groupings, E and NP weighting, generated eight CIs for each of the 19 
forest management strategies (Fig. 8). All CIs based on z-scores had 
means centered at zero and presented a greater overall range than MM. 
The range difference was evident in the contrast displayed between 
normal and short rotation periods in EAF managements, low-scoring 
spruce EAF values, and unmanaged scores for E weighting. 

The z-score CIs and MM CIs differed significantly (p = 1.3e-07), and 
the Z-score CIs showed greater variability between management stra
tegies than MM (Fig. 9a). The two Z-score sub-component groupings, 
theoretical and hybrid, did not differ significantly (Fig. 9b). The main 
divergence was the score for unmanaged EHWB, with theoretical being 
much lower than hybrid. There was no significant statistical difference 
between the E and NP weighting, with the lower amplitude of the NP 
indicating the inherently reduced tradeoff between production and 

other aspects. Both schemes were suitable for evaluating management 
strategies and provided good contrast between relevant priorities 
(Fig. 9c). Z-score normalization of hybrid sub-component groupings for 
both E and NP weighing schemes were selected for further analysis, as 
these CIs depicted policy-relevant differences between management 
strategies. 

3.3. Management evaluation 

It was possible to average EHWB scores into a single set of man
agement values, one each for E and NP weighting (Fig. 10), as only 
minor differences were found between the management scores for the 
nine combinations of each region and period. E-weighting had a larger 
range of scores (76.0 ± 21.2) compared to NP (32.0 ± 5.8). For E, most 
managements fell within a variance boundary of each other and sup
ported different policy targets. They would be beneficial when imple
mented in tandem, depending on the local conditions. CCF1 was the 
management strategy providing most Biodiversity and Production 
ecosystem benefits for E (28.9 ± 13.8), closely followed by CCF2 (22.0 

Fig. 6. Density heatmap for indicators normalized with (a) min–max and (b) z-scores, averaged across RCMs, regions, and periods. Production, CCMRM, and 
Biodiversity aspects are indicated by HCA cluster dendrograms. 
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± 19.2), both with a wide variation between regions and periods. EAF 
pine with normal rotation and high PCT tolerance had a slightly higher 
average but lower spatial and temporal variability (22.3 ± 8.1), pri
marily supporting Production. Additional well-scoring strategies favor
ing CCMRM within a similar SD range included normal rotation length 

nemoral-broadleaf mixtures (12.7 ± 12.7 for low, and 14.5 ± 11.8 for 
high PCT), boreal-broadleaf mix with normal rotation and high PCT 
(14.2 ± 11.3), and short rotation high PCT pine (16.8 ± 8.0). For NP, 
unmanaged forestry had the largest contribution to EHWB (14.0 ± 3.1), 
followed by normal rotation nemoral-broadleaf mix (6.7 ± 6.1 for low 

Fig. 7. Multivariate sub-component groupings (Production, CCMRM, and Biodiversity) of extended individual indicators for (a) PCA eigenvalues, (b) EFA loadings 
with varimax rotation, (c) C-alpha correlations (removed from total variance and sorted based on total correlation), and (d) HCA dendrogram with a height threshold 
of three. 

Fig. 8. The eight CI structures for ecosystem-human well-being (EHWB) were constructed from min-max (MM) and z-score (Z) normalizations, theory (T) and hybrid 
(H) sub-component groupings, and equal (E) or nature protection (NP) weighting schemes. Scores averaged across three regions and periods. Lines between dots 
display the contrast between CIs in relation to the different management strategies. 
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and 7.2 ± 5.5 for high PCT), CCF1 (5.5 ± 4.0), boreal-broadleaf mix with 
normal rotation period and high PCT tolerance (6.3 ± 3.6), and CCF2 
(4.7 ± 6.3). EHWB values indicated these five approaches as most 
beneficial if implemented together as they combine Biodiversity and 
CCMRM targets. All four EAF spruce strategies scored negatively (i.e., 
below average) in all regions and period combinations for both E and 
NP. Besides spruce, negative averages were present in unmanaged 
(-18.9 ± 9.0) and low PCT pine for E and NP, respectively. While 
negative z-scores alone indicate poor large-scale feasibility, the addition 

of understanding what ES benefits they provide means they can be 
complementary when combined at smaller scales to other approaches. 

The highest EHWB scores for E weighting showed agreement be
tween regions and periods (Fig. 11), indicating a consensus regarding 
best-practice while considering climate change. Among the best per
forming strategies were different varieties of CCF and high PCT EAF 
pine. Nemoral and boreal mixed stands with normal rotation periods 
also performed well and primarily supported CCMRM, covering all 
policy targets when incorporated with the other strategies. For the N. 

Fig. 9. Systematic evaluation of CIs based on unpaired t-tests (a) min–max (MM) vs. z-score (Z) normalization, (b) theoretical (TSC) vs. hybrid (HSC) sub- 
components, and (c) two weighting schemes. 
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Fig. 10. Composite indicators of managed forest contribution to ecosystem-human well-being for equal (E) and nature protection (NP) weighting schemes, Symbol 
coloring is proportional to the contribution of CCMRM, Production, and Biodiversity (upper-left triangle). Whiskers display standard deviation of spatial and 
temporal variations. The values, based on z-scores and hybrid sub-components, were sorted in descending order. 

Fig. 11. Managed forest contribution to ecosystem-human well-being (EHWB) for regions (left) and periods (right) based on equal (upper) and nature protection 
(lower) weighting schemes. Same outline as Fig. 10. 
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Boreal, high variability was found for boreal-broadleaf mix management 
with short rotation periods (-4.7 ± 23.4 and − 2.7 ± 23.4, for low and 
high PCT, respectively), indicating sub-optimal ES provisioning over 
time. Normal rotation high PCT pine appeared most stable for N. Boreal 
with a lower mean EHWB than CCFs but with less variation over time 
(14.3 ± 2.2). CCF1 contributed positively towards Biodiversity and 
Production policy targets over time (19.6 ± 15.6), but CCF2 risked a 
negative impact (20.5 ± 25.5). For S. Boreal, suitable strategies include 
CCF1 (26.8 ± 12.8), CCF2 (16.9 ± 21.6), high PCT tolerance pine (26.3 
± 6.7 for normal and 23.2 ± 4.3 for short rotations), and nemoral 
mixtures with normal rotation periods (21.6 ± 4.8 for low and 23.0 ±
4.7 for high PCT tolerance). Multiuse forestry aims were satisfied best in 
the Nemoral region by continuous cover practices (CCF1 = 40 ± 5. 5 and 
CCF2 = 28.5 ± 15.6) in addition to pine stands with high PCT tolerance 
(for normal 26.7 ± 8.1 and short 17.7 ± 8.1 rotation times) as together 
those strategies balance Production, Biodiversity, and CCMRM targets. 
Nemoral and boreal mixed stands with normal rotation periods also 
performed well for incorporation with the other strategies, offering the 
greatest amount of terrestrial carbon sequestration and risk reduction. 

All strategies except spruce EAF and CCF showed a small rise in 
EHWB over time (Fig. 11 upper right). However, an overall decrease was 
observed when comparing all approaches and their regional variation: 
maximum EWHB diminished from 43.8 ± 21.0 in P1 to 31.5 ± 25.9 in 
P2, and 26.8 ± 23.9 in P3. CCF strategies were highest for all regions 
until P3, by which point pine or boreal bread-leaf mix and nemoral 
broad-leaf mix with high PCT tolerance presented higher EWHB for N. 
and S. Boreal regions. Only the Nemoral region persisted with a high 
score for CCF1 into P3. Over P1, CCF2 performed best (43.8 ± 2.3) along 
with CCF1 (37.6 ± 5.1) and EAF pine with normal rotation and high PCT 
tolerance (21.9 ± 6.5), pointing to these strategies being ideal following 
RCP2.6 for Production and Biodiversity. The same three strategies per
formed well across all regions for P2 and the same boreal and nemoral 
mixtures ideal for S. Boreal and Nemoral regions, widening the different 
practices providing CCMRM ES under RCP4.5. Pine with high PCT 
tolerance performed best in P3 (comparable to conditions for RCP8.5) 
alongside boreal mix for both rotation lengths and high PCT, nemoral 
mix with normal rotation and high PCT, and CCF1. Unmanaged, spruce, 
and nemoral broad-leaf mixtures with normal rotation lengths scored 
negatively (i.e., below average) across regions and periods. 

The different ES priorities represented by NP weighting shifted the 
combination of multifunctional forestry approaches recommended by 
the CI compared to E weighting (Fig. 11 lower left). There was complete 
agreement between the highest overall EHWB scores when considering 
spatial and temporal variability as seen with E weighting. Unmanaged, 
mixed nemoral-broadleaf stands with normal rotation periods, and 
boreal- and nemoral-broadleaf mixtures with high PCT tolerance were 
the most suitable strategies for satisfying Biodiversity and CCMRM NP 
forestry goals. CCF2 exhibited a high temporal variability within N. and 
S. Boreal regions (5.4 ± 8.8 and 2.0 ± 6.0, respectively), indicating 
sensitivity to changing climate conditions. Despite lower mean EHWB 
scores, the same sensitivity is observed for boreal-broadleaf mix with 
short rotation times (0.7 ± 7.1 for low and 1.6 ± 7.3 for high PCT 
tolerance), suggesting their efficacy in higher latitudes could be opti
mized depending on the climate conditions. Unmanaged had the highest 
ES utility for all regions, but S. Boreal and Nemoral regions substantially 
benefitted from nemoral mixtures with normal rotation period length. In 
addition to the already mentioned strategies, short rotation nemoral mix 
(8.4 ± 1.7 for low and 8.7 ± 1.4 for high PCT tolerance) performed well 
in S. Boreal. Like CCF2 in E weighting managements, CCF1 scored 
moderately in lower Nemoral (8.1 ± 1.2) and S. Boreal (4.3 ± 2.0) lat
itudes but risked a negative goal target impact depending on temporal 
and climate variability in the N. Boreal (4.2 ± 6.4). 

After unmanaged, EHWB in all regions under changing climate 
conditions benefited the most from normal rotation length nemoral mix 
strategies (Fig. 11 lower right). Both high (6.2 ± 6.6 for P1, 7.2 ± 6.4 for 
P2, and 8.3 ± 6.0 for P3) and low (5.5 ± 7.1 for P1, 6.7 ± 7.4 for P2, and 

7.9 ± 6.4 for P3) PCT tolerances were effective. Nemoral mix with short 
rotation and high PCT was moderately beneficial to CCMRM EHWB for 
all periods, increasing from P1 to P3, and would perform better across all 
latitudes with warmer conditions. Similarly, P1 displayed a low mean 
score for boreal mix with normal rotation and high PCT (1.8 ± 1.3) but 
improved greatly under P2 and P3 (8.1 ± 2.0 for P2 and 9.1 ± 1.1 for 
P3). Boreal-broadleaf managements scored poorly for all regions in the 
near future but were universally enhanced under warmer scenarios. All 
periods scored moderately high with CCF1, but CCF2 only performed 
well in P1 (11.6 ± 1.9) and not the more severe scenarios (2.9 ± 4.5 and 
− 0.6 ± 3.9 for P2 and P3, respectively). This elucidates a sensitivity to 
climate conditions from CCF when subjected to the cutting scheme of 
CCF1. CCF1 was highest in P1 and P2, especially for the Nemoral region, 
but had low EHWB for P3, suggesting the approach is only suitable 
under RCP2.6 or RCP4.5. Besides CCF, all EAF and unmanaged strate
gies increased in average EHWB over time, indicating better multi
functional performance in a warmer climate (not including EAF spruce). 
CCF showed the opposite trend with a decrease in average EHWB with 
warmer conditions. As with E weighting, EAF spruce managements 
contributed negatively to ES and goal targets across all regions and 
periods, as did pine and short rotation boreal strategies. 

4. Discussion 

Forest ecosystems provide a diverse range of services (Reyers et al., 
2013; Wood et al., 2018). Every form of management alters the eco
system’s capacity to generate ES and presents different trade-offs and 
synergies (Nelson et al., 2007; Costanza et al., 2017; Rehman et al., 
2021). This study synthesized ecosystem model output for ten ES in
dicators into one representative composite, detailing how different 
management practices contribute to EHWB at the landscape level. Policy 
to equally prioritize production and conservation could be better sup
ported by further implementing continuous cover and broadleaf-mixture 
strategies. The CIs indicated the benefit of high tolerance PCT in EAF 
strategies over intensive clearing, permitting more naturally regener
ated deciduous tree species to grow within coniferous plantations. 
Normal rotation lengths showed higher multifunctional value compared 
to shorter rotations. Under changing climate conditions, recommenda
tions remain the same for all ecoregions. 

4.1. Composite development 

CIs are not an end-all-be-all representation of scientific results but a 
tool that can aid incentive programs, monitoring, and policy enforce
ment, as CIs excel at communicating complex information to decision- 
makers (c.f. OECD, 2008; Alam et al., 2016; Attardi et al., 2018; 
Eyvindson et al., 2018). This study contributed to new methodological 
insights as few CIs consider all three sustainability dimensions (Singh 
et al., 2009), and developing a CI based on ecosystem model output 
instead of observed values is less common (El Gibari et al., 2019; Greco 
et al., 2019). Multiple sources of uncertainty exist throughout a CI 
development process (Böhringer and Jochem, 2007; OECD, 2008). 
Comparison against real-world observations to validate and optimize CI 
structures, specifically sub-components and aggregation, would 
improve confidence in the EHWB values. The modeled nature of input 
data prevented such analytical techniques, representing a weakness in 
this composite. However, LPJ-GUESS’s structure and parameters have 
been extensively evaluated and are considered sufficient in a forestry 
context (Lagergren and Jönsson, 2017). Under these circumstances, 
using systematic evaluation to select the final CI structure would be 
satisfactory and supported by previous studies (Burgass et al., 2017; El 
Gibari et al., 2019; Greco et al., 2019). This included the comparison of 
averaged scores for each contrasting stage of development, and t-tests to 
determine whether a decision between two structures was based solely 
on expert judgment or due to mathematical significance. An analysis of 
the CI design is recommended for environmental-based CIs (Böhringer 
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and Jochem, 2007; Klapwijk et al., 2018). The normalized z-scores 
preserved outliers and were significantly different from MM, while the 
sub-components and weighting schemes were not statistically different 
because their structures were very similar in EHWB values. Hybrid 
groupings better accounted for the underlying correlation between in
dicators, owing to the large variety of multivariate techniques 
employed, and that HCA was applied for each normalized grouping. 
Both weighting schemes were retained to add more depth to manage
ment recommendations. 

The procedure outlined by Alam et al., (2016) and OECD (2008) was 
applied in this study to balance complexity with comprehension, a ne
cessity when aiming to inform management practices (Greco et al., 
2019). CIs can be useful, but it is crucial to consider the subjectivity 
under which they are developed (Lehtonen et al., 2016). The formation 
of theoretical sub-components influenced the subsequent developmental 
stages. EOs and SDGs were categorized by which of the three sustain
ability dimensions each goal resonated with, but all goals are inter
linked, and debate exists about how they can be structurally arranged 
(Griggs et al., 2014). ES types were similarly separated between theo
retical sub-components to capture the feedbacks related to policy goals, 
each corresponding to the related dimension of sustainability 
(Table A1). In the real world, these indicators are linked to each other in 
ways not easily separated (Labuschagne et al., 2005). Sorting these 
complex concepts is nearly impossible because of the endless ways 
humans can interact with ES (Wood et al., 2018). However, the final CI 
represents biosphere wellness, which adjacently builds the foundation 
for net HWB across dimensions and goals. 

The shift of three ES indicators between theoretical and hybrid sub- 
components demonstrates the highly interconnected nature of ES. 
Modeled carbon storage was based on ecosystem carbon balance, not 
retention time, which is more relevant to climate change mitigation and 
makes sense placed under Biodiversity (Harrison et al., 2014). The 
fraction of broad-leafed trees going from Biodiversity to CCMRM is also 
supported by literature, since Norway spruce trees are highly vulnerable 
to storm damage, and replacing them with less sensitive broad-leafed 
species has a substantial statistical impact on risk reduction (Canham 
et al., 2001; Lagergren et al., 2012). Biomass sequestration was highly 
correlated to harvested biomass in Production as, over time, it will 
transform into harvested biomass (or soil carbon if left unmanaged). 
This transformation occurs over hundreds of years, so the extracted 
moments in time are considered still-standing or recently-harvested 
forest (Sitch et al., 2003; Lagergren and Jönsson, 2017). Complete 
agreement across the four multivariate approaches did not exist, indi
cating how other shifts could be justified. However, the application of 
several multivariate techniques made the hybrid groupings robust (El 
Gibari et al., 2019), and conducting these techniques on extended data 
with four RCM runs from different climate model ensembles reduced 
uncertainties (Burgass et al., 2017). 

Cultural ESs are challenging to quantify, especially with models, as 
societal SDGs are only implicitly captured by combining all service 
types, not capturing specific trade-offs (Wood et al., 2018). The risk 
management portion of CCMRM was only captured in the context of 
storm sensitivity. This does not directly consider forest fires or pest 
damage. However, a strong correlation exists between storm damage 
and the amount of windthrown trees that both serve as brood material 
for bark beetles and heighten the likelihood of forest fires due to the 
presence of dry, flammable wood (Jactel et al., 2009; Kärvemo et al., 
2014). Such risks further relate to the indicators of carbon storage and 
old trees. Additional statistical analysis would be required to assess if 
bark beetle and forest fire indicators would contribute significant new 
information. 

4.2. Multifunctional forestry management 

While Sweden has been practicing clear-cut rotation monoculture 
forestry since the early 19th century (Lundmark et al., 2014), the 1993 

Swedish Forestry Act was an essential shift to including conservation 
goals equally with production efforts. As private forest owners freely 
implement these parallel priorities at their discretion, the economic 
tradition of prioritizing high-yield management persists across all 
institutional levels in Sweden (Angelstam et al., 2020). Shifting attitudes 
about forests’ roles in supplying more than economic value is essential to 
meeting Sweden’s sustainability goals (Lindahl et al., 2017). The envi
ronment is the common factor in meeting SDGs; some goals explicitly 
concern ecosystem function while others are indirectly linked (Folke 
et al., 2016; Wood et al., 2018). All goals benefit from the restoration, 
protection, and sustainable use of the biosphere (Perkins et al., 2015; 
Rehman et al., 2021). 

Exploring the prioritization of nature protection on services saw a 
shift to unmanaged forestry well beyond any other strategy, and forest 
areas should be set aside as unmanaged as their impact on biodiversity is 
unquestionably valuable (Felton et al., 2016; Angelstam et al., 2020). 
However, while unmanaged forests show the highest potential for 
biodiversity and climate mitigation, they score poorly under E weighting 
as they do not contribute to production benefits. For managed forest, the 
CIs based on both weighting schemes agrees that combinations of 
continuous cover and broadleaf-mixture managements are optimal to 
balancing production, biodiversity conservation, and climate change 
mitigation priorities. Such recommendations are, to some extent, 
already in place in the forest certification standards (PEFC, 2017; FSC, 
2020). To promote sustainability, both FSC and PEFC stipulate that 
broadleaf trees should dominate at least 5% of areal cover, and 10% of 
the stems in a coniferous stand should be broad-leaved. FSC also states 
that part of the forest should be managed with adapted methods such as 
CCF to promote natural and social values. Stronger actions, including 
restricted clear-cutting, have recently been suggested in relation to the 
new EU forest strategy for 2030 (EU, 2021). 

Biodiversity goals and climate change mitigation overlap with risk 
management strategies, as species more resistant to storm damage grow 
longer and sequester more carbon (Canham et al., 2001; Kärvemo et al., 
2014). Higher scores for broadleaf mixtures compared to CCF for P3 
capture this. By the century’s end, RCP8.5 conditions for mid and lower- 
latitude ecoregions would be more tolerant to CCF as biodiversity in
dicators are complemented by increased storm resistance by broad
leaves (Keskitalo et al., 2016; Lagergren and Jönsson, 2017). Triviño 
et al., (2015) modeled alternative management strategies across the 
boreal forests of Finland and found that “business-as-usual” approaches 
prioritizing production output are incapable of improving carbon 
sequestration and biodiversity. Despite a temporary reduction in yields 
while new CCF regimes are implemented as trees are only removed 
during the final cut, they would be a cost-effective long-term approach 
to mitigating climate change and securing ecosystem function (Felton 
et al., 2016; Angelstam et al., 2020). 

The relationship depicted by the CIs is highly dependent on scale, 
meaning that the recommendations carried out for entire regions and 
20-year periods do not directly equate to what would be best for each 
owner for smaller parts of land (Rioux et al., 2019). Furthermore, while 
the main CI accounts for the variation across time periods following 
RCP8.5, the period-specific CIs reflect a narrower range of climate 
conditions. No single management strategy exists that can simulta
neously promote production, biodiversity, and climate mitigation goals. 
However, a diversified combination of regimes at the landscape level 
would satisfy their trade-offs (Triviño et al., 2015; Keskitalo et al., 2016; 
Angelstam et al., 2020), and real-world implementation of alternatives 
would be done gradually between mixtures and environmental condi
tions (Felton et al., 2016). The large variation in averaged EHWB scores 
with E weighting supports the use of multiple strategies best optimized 
for specific regions, with different strategy combinations at the land
scape level fulfilling different overarching goals (Lagergren and 
Jönsson, 2017). A combination of CCF, normal rotation nemoral mix
tures, and high PCT tolerance pine strategies were suited for Nemoral 
and S. Boreal ecoregions, while N. Boreal leaned more towards CCF. 
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EHWB decreased in CCF over time under RCP8.5, as CCF strategies 
represent one of the lowest scoring strategies for storm resistance, and 
the root anchorage capacity during winter storms will decrease in a 
warmer climate as an effect of fewer days with frozen soil (Lagergren 
et al., 2012). 

More study is needed to optimize parameterization within LPJ- 
GUESS and specify which species and strategies are suited for specific 
forestry plots at finer spatial extents (Lagergren and Jönsson, 2017). 
While the spruce-dominated CCFs had high CI values in boreal regions, 
EAF spruce for all PCT tolerances and rotation lengths had low CI values 
throughout all regions, periods, and averages. Normalized indicators 
before aggregation show low values for deadwood, old deciduous forest, 
and biomass sequestration. Spruce species grow in higher densities, 
produce less naturally-thinned litter, and have higher harvest fre
quencies, so less old forest is generated (Lagergren and Jönsson, 2017). 
However, spruce and pine should yield similar growth and biomass 
values (Jönsson et al., 2015), and the low biomass sequestration for 
spruce suggests the need to improve parameters relating to spruce 
management. This study averaged cohort SQC together, but tree species 
respond differently to soil conditions, influencing growth rates, root 
structure, and the strength of generated ESs (Jandl et al., 2007; 
Jungqvist et al., 2014). As soil characteristics are not uniform across 
Sweden, weighted averaging accounts for this variability, but findings 
are still not representative of local conditions and are only applicable at 
regional landscape scales. Preserving SQC variation over ecoregions and 
different climate conditions minimizes this shortcoming. Recommen
dations should not be applied for specific nutrient-poor or rich areas but 
used to inform based on general regional soil conditions. 

4.3. Outlook 

Warmer temperatures in Sweden will lead to longer growing seasons, 
accelerating nutrient turnover, and increasing CO2 concentrations, 
leading to a higher forest production capacity (Reyer et al., 2014). While 
this could be considered a positive regarding harvestable wood products 
and expanding the amount of carbon stored in standing biomass, exac
erbated EWE frequency and severity puts pressure on ecosystems and 
heightens risks from drought, fire, storm damage, and pest outbreaks 
(Jactel and Brockerhoff, 2007; Sturrock et al., 2011; Jönsson and 
Lagergren, 2018). ES benefits vary and are hard to quantifiably repre
sent with their sometimes-indirect effects or complex nature (Harrison 
et al., 2014). The theoretical framework employed here combined 
various indicators to ensure cultural ES benefits are indirectly 
addressed, but more study into the social nature of forest management is 
recommended, especially at local spatial extents (Balvanera et al., 2014; 
Harrison et al., 2014). 

Sweden’s EO system tracks national climate and biodiversity policy 
targets while aligning with agreements from international bodies, 
including the SDGs. Drawing on reports from the IPCC, IPBES, and other 
UN environmental policies, priority is given to recovering ecosystems, 
protecting biodiversity, mitigating climate change, and changing 
human-use and consumption habits of the natural world to be more 
sustainable (Tollefson, 2018; Díaz et al., 2019). The overarching aim 
behind the EOs outlines how significant, meaningful changes must be 
made at every level of society and done within one generation for 
progress to be fulfilled (Larsson and Hanberger, 2016). Our results 
incorporated this intent and considered multiple policy levels, high
lighting how combining management strategies in a multifunctional 
approach will best resolve the synergies and trade-offs. One strategy will 
not be sufficient for large areas; instead, adaptation based on local 
conditions must occur. Variation in approaches to explore at smaller 
scales include further understanding the climate risks, species selection, 
rotation lengths, and thinning regimes. It is essential to evolve a more 
holistic forested land-use approach to ensure sustainability across 
environmental, economic, and social dimensions (Díaz et al., 2015; 
Tollefson, 2018). Applying this perspective at the core of future CI 

development will ensure that research and recommendations contribute 
to these aims. 

5. Conclusion 

We developed CIs based on modeled ES indicators to aid communi
cation about the impact of different forest management strategies in 
relation to sustainable development goals. The theoretical ES categori
zations were evaluated to account for the statistical similarity between 
indicators. Resulting hybrid sub-components with z-score normalization 
and two weighting schemes for different policy prioritizations were 
combined into CIs. The weights with equal emphasis generated a larger 
range of scores (76.0 ± 21.2) than weights with a stronger focus on 
nature protection (32.0 ± 5.8), as the latter inherently included less 
trade-offs between production and other aspects. The final scores of the 
19 management strategies fell within a variance boundary of each other, 
showing their contribution to different policy targets and the usefulness 
of combining strategies at the landscape level. The composites displayed 
agreement across regions and scenarios, indicating that a shift from 
even-aged conifer monocultures towards a combination of continuous 
cover, broadleaf-mixture, and unmanaged would work well for 
balancing goals under changing climate conditions. Areas of improve
ment include continued development of the ecosystem model to repre
sent managed forests better, incorporating more ES indicators, and 
further development of the CI framework to represent combined stra
tegies at the landscape level. 
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(Swedish forest agency). Report. 

Rehman, A., H. Ma, M. Ahmad, M. Irfan, O. Traore, and A. A. Chandio. 2021. Towards 
environmental Sustainability: Devolving the influence of carbon dioxide emission to 
population growth, climate change, Forestry, livestock and crops production in 
Pakistan. Ecological Indicators 125. 

Reyer, C., Lasch-Born, P., Suckow, F., Gutsch, M., Murawski, A., Pilz, T., 2014. 
Projections of regional changes in forest net primary productivity for different tree 
species in Europe driven by climate change and carbon dioxide. Ann. For. Sci. 71 (2), 
211–225. 

Reyers, B., Biggs, R., Cumming, G.S., Elmqvist, T., Hejnowicz, A.P., Polasky, S., 2013. 
Getting the measure of ecosystem services: a social–ecological approach. Front. Ecol. 
Environ. 11 (5), 268–273. 

Rioux, J.-F., Cimon-Morin, J., Pellerin, S., Alard, D., Poulin, M., 2019. How land cover 
spatial resolution affects mapping of urban ecosystem service flows. Front. Environ. 
Sci. 7, 93. 

Rummel, R.J., 1988. Applied factor analysis. Northwestern University Press. 
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