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A B S T R A C T   

Forest characteristics vary largely at the regional level and in smaller geographic areas in Finland. The amount of 
greenhouse gas emissions is related to changes in biomass and the soil type (e.g. upland soils vs. peatlands). In 
this paper, estimating and explaining spatial patterns of tree biomass change across Finland was the main in
terest. We analysed biomass changes on different soil and site types between the years 2009 and 2015 using the 
Finnish multi-source national forest inventory (MS-NFI) raster layers. MS-NFI method is based on combining 
information from satellite imagery, digital maps and national forest inventory (NFI) field data. Automatic seg
mentation was used to create silvicultural management and treatment units. An average biomass estimate of the 
segmented MS-NFI (MS–NFI–seg) map was 73.9 tons ha− 1 compared to the national forest inventory estimate of 
76.5 tons ha− 1 in 2015. Forest soil type had a similar effect on average biomass in MS–NFI–seg and NFI data. 
Despite good regional and country-level results, segmentation narrowed the biomass distributions. Hence, 
biomass changes on segments can be considered only approximate values; also, those small differences in average 
biomass may accumulate when map layers from more than one time point are compared. A kappa of 0.44 was 
achieved for precision when comparing undisturbed and disturbed forest stands in the segmented Global Forest 
Change data (GFC-seg) and MS–NFI–seg map. Compared to NFI, 69% and 62% of disturbed areas were detected 
by GFC-seg and MS–NFI–seg, respectively. Spatially accurate map data of biomass changes on forest land 
improve the ability to suggest optimal management alternatives for any patch of land, e.g. in terms of climate 
change mitigation.   

1. Introduction 

In the European Union (EU), forest land is an important category in 
the Land Use, Land-Use Change and Forestry (LULUCF) sector, 
absorbing nearly 9% of total emissions of other sectors in 2019 (Euro
pean Environment Agency, 2021). However, forest characteristics vary 
largely at the regional level and in smaller geographic areas. The amount 
of greenhouse gas emissions is related to changes in biomass and for 
example to the soil type (e.g. mineral soils vs. peatlands). Peatlands have 
huge potential in climate change mitigation (Leifeld and Menichetti, 
2018). Peatland forests cover nearly 8% of forest land in the EU; the 
proportion is highest in the boreal zone. In Finland peatlands cover 27% 
of forest land, and most of it (72%) is drained. Consequently, largest 
emissions within forest land result from drained peatlands in Finland 
(Statistics Finland, 2021). Forest characteristics affect the forest man
agement practices and how vulnerable single stands are to disturbances. 
Biomass losses, disturbances and decomposition result in greenhouse gas 
emissions (Herold et al., 2019). Hence, spatially accurate maps are 

valuable for forest resource management (Herold et al., 2019), and for 
precision forest management where decisions are made based on accu
rately determining forest characteristics (Holopainen et al., 2014). 

Various types of remote sensing data have been used for monitoring 
forest biomass. Typically, optical satellite imagery, field measurements 
and allometric models on the basis of field measurements are used in 
remote sensing-based mapping and monitoring of biomass (Tuominen 
et al., 2010; Hirata et al., 2014; Saarela et al., 2020; Li et al., 2020). Use 
of satellite data allows very large area biomass mapping, even conti
nental level (Kindermann et al., 2008; Gallaun et al., 2010). More ac
curate map predictions of biomass (especially for small areas) can be 
achieved by using airborne laser scanning (ALS) which is considered the 
most accurate remote sensing data in estimating growing stock and 
biomass variables, due to the 3-dimensional canopy modelling capa
bility of the data (Tuominen and Haapanen, 2013; Saarela et al., 2020). 
The drawback of ALS is the high cost of the data, which limits the area 
coverage and temporal resolution of the data. Active satellite sensors 
such as satellite-based radar have been used for biomass mapping, but in 
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general, their main advantage over optical satellite sensors in biomass 
mapping is their capability the penetrate cloud cover (Tokola et al., 
2007; Holopainen et al., 2014; Lohberger et al., 2011). Satellite based 
Global Ecosystem Dynamics Investigation (GEDI) allows large area 
coverage combined with 3D data for biomass mapping (Saarela et al., 
2018), but the main drawback of the sensor is the low spatial resolution 
of mapping and limited latitudinal range of the instrument. 

During the last two decades, several maps of biomass and forest 
cover have been produced at global and regional scales, in many cases at 
coarse resolution, e.g. Hansen et al. (2003) and Kindermann et al. 
(2008). At a regional level, higher resolution biomass maps are also 
available, but in some cases, they have limitations in the available in situ 
data or the sensitivity of satellite sensors to forest biomass (Rodrí
guez-Veiga et al., 2016). Global Forest Change layers (Hansen et al., 
2003) have been used with biomass maps to quantify biomass loss due to 
harvests on forest land. However, results at the European and country 
level show that biomass densities vary regionally, causing decreasing 
correlation between harvested areas and actual biomass loss. According 
to Ceccherini et al. (2020), biomass loss has increased by 69% between 
the periods of 2011–2015 and 2016–2018. This finding has been chal
lenged and found to be conflicting with national statistics (Picard et al., 
2021). 

Direct field-based NFI measurements produce accurate reference 
data (Egusa et al., 2020), which can be used for the validation of biomass 
maps. Several countries have NFI data available, especially in the EU. 
However, it is often not regularly measured or up-to-date hindering 
biomass map validation (Avitabile and Camia, 2018). In Finland, NFI 
data are continuously measured at a five-year inventory cycle. Besides, 
the Finnish Multi-Source National Forest Inventory (MS-NFI) provides 
multi-temporal thematic raster layers for the whole country on large 
number of forest variables at a pixel resolution of 16 m, e.g. timber 
volume and biomass by tree species, land-use class and site type. MS-NFI 
data is based on satellite images (Landsat 5 TM/7 ETM+/8 OLI, Sentinel 
2A-MSI, IRS P6, ALOS AVNIR-2), digital maps and NFI field data and is 
produced every second year (Tomppo and Halme, 2004; Tomppo et al., 
2008a; Mäkisara et al., 2019). In many other countries, similar products 
are provided (Reese et al., 2003; Gjertsen, 2007; Barrett et al., 2016; 
Nilsson et al., 2017; Katila and Heikkinen, 2020). Where NFI data are 
not available, ALS have been successfully used for validating and cali
brating satellite based estimates with larger spatial coverage. Combining 
ALS and Landsat satellite time series have also been used with random 
forest model (R package) to estimate forest structure across different site 
types (Bolton et al., 2020). Biomass density maps based on remotely 
sensed data can be used to enhance field inventory stratification to 
provide estimates on under-sampled or unapproachable areas (ISPRA, 
2021; Vangi et al., 2023). 

High resolution and high accuracy estimate on tree biomass and its 
changes are essential to policy makers and to forest owners for targeting 
climate change mitigation and adaptation actions (Herold et al., 2019). 
Currently, climate change mitigation initiatives have connections to the 
forest owner level, when governments support forest management 
practices, that increase carbon sequestration or reduce GHG emissions 
from forests. In addition, the forest industry is interested in compen
sating for their CO2 emissions, where forest management actions could 
provide feasible ways to increase carbon sinks. Also, soil carbon 
modelling community benefit from accurate biomass maps, as those can 
be used to derive litter fall estimates that are needed for soil C 
simulations. 

Stands are the basic units for forest management and forestry prac
tices prefer relatively permanent stand boundaries. Formerly, stand 
boundaries were delineated manually based on the interpretation of 
aerial photographs. Currently, they are mainly delineated automatically 
based on digital remote sensing data. Stands delineated from raster 
format thematic map data of MS-NFI based on automatic image seg
mentation can be used as the units for modelling of carbon cycles in 
forests. Pixel-based classification often has a large variation with 

neighbouring pixels (Yu et al., 2006; Kim et al., 2011). In our study, we 
created homogeneous units by segmentation, which could be further 
applied in targeted climate change mitigation studies. In Finland, it is 
essential to delineate peatland from mineral soils due to remarkably 
different forest management treatments and accessibility (Pukkala, 
2020), and in addition, the drainage situation of peatland soils strongly 
affects GHG emissions. Site fertility is related to growth rate and soil 
GHG exchange estimation, and it is therefore important in segmentation, 
as well as growing stock characteristics (Mustonen et al., 2008). 

Our motivation for this study was to compute a segmented biomass 
map according to soil type, volumes of growing stock per main tree 
species and property borders to facilitate spatial GHG exchange esti
mation. Biomass densities and their changes were estimated for the 
segments. In this study, we utilized MS-NFI data from 2009 to 2015 to 
derive above and below ground biomass for the segments and investi
gate spatio-temporal variation of biomass. With stand level soil carbon 
modelling, it is essential to know the amount of biomass in forest stands 
and which kind of forests management actions have been done, e.g. 
allocation of felling sites, when seeking best solutions in forest man
agement to mitigate climate change. Reference data for overall above 
ground and below ground biomass estimates were derived from NFI. In 
our study, estimating tree biomass change and explaining spatial pat
terns across Finland were the main interests. For this we analysed 
biomass changes on different soil types on forested land. The specific 
objectives of the study were (1) to produce segmented fine resolution 
maps on tree biomass and its changes, (2) to evaluate accuracy and 
usefulness of segmented biomass maps and biomass change maps, (3) to 
retrieve stand-replacement harvest map based on biomass changes and 
evaluate its precision with corresponding Global Forest Change data by 
Hansen et al. (2013). 

2. Materials 

2.1. Study area 

The study area covers whole Finland ranging from hemiboreal to 
subarctic zone (59◦40′- 70◦05′ N; 19◦05′ - 31◦35′ E) (Fig. 1). The main 
tree species are Scots pine (Pinus sylvestris), Norway spruce (Picea abies), 
and birch species (Betula spp.) as well as other deciduous species (mostly 
Populus tremula and Alnus spp.). The forested area covers approximately 
70% of the land area and is nearly entirely in the boreal zone. Topog
raphy varies typically from sea level to 200 m a.s.l., in Southern Finland, 
while higher hills are located in Northern Finland, where there is also a 
transition from forest zone to alpine tundra on the fell tops. The treeline 
in the north varies between 200 and 450 m a.s.l. (Franke et al., 2019). 

Forestry is active everywhere and on all types of forest lands where it 
is considered economically profitable. Exceptions are northernmost 
Finland and conservation areas. Forests in southern Finland consist 
mainly of productive land with small rocky hills or mires. Forests are less 
productive in the North and the proportion of peatland forests is larger. 
Protected areas are 8.2% on forest land or 12.6% with poorly productive 
forest land (strictly protected forests, class 1; and protected forests on 
biodiversity conversation sites where cautious fellings are allowed, class 
2) (Luonnonvarakeskus, 2022). Most of the protected areas are in 
Northern Finland. 

2.2. Field data 

National forest inventory (NFI) field data were used as a reference 
data in the study. NFI field plot data are based on systematic cluster 
sampling (Korhonen et al., 2017). We used data from the tenth NFI 
(NFI10 2004-2008), eleventh NFI (NFI11 2009-2013) and available data 
from the twelfth NFI (NFI12 2014-2017). The total number of sample 
plots in NFI varies between inventory cycles but is between 60 000 and 
70 000 plots on land areas. NFI data are also used in the Finnish 
greenhouse gas inventory in biomass estimation (Statistics Finland, 
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2021). Trees in NFI are measured whether they are sample trees or tally 
trees. Sample trees have larger numbers of measured parameters, and on 
tally trees, only basic parameters are recorded and measured, e.g. tree 
species and diameter at breast height (1.3 m). Biomass estimates are first 
predicted for sample trees by the wood density and biomass models 
(Repola et al., 2007; Repola, 2008, 2009). Biomass estimates of tally 
trees are based on estimates of sample trees and the parameters of tally 
trees and stands (Korhonen et al., 2013, 2017; 2021). Accomplished 
management measures, such as cutting types and years are recorded for 
the sample plots. In the NFI, the national definition of forest land is 
based on annual average growth including bark (at least 1 m3 ha− 1 a− 1); 
sites with growth in 0.1–1 m3 ha− 1 a− 1 are classified as poorly pro
ductive forest land. Forested land is the combination of these two clas
ses. In this study, we also consider the FAO/FRA definition of forest land, 
which is applied in Finnish greenhouse gas inventory. The FAO/FRA 
forest land is defined as land with trees higher than 5 m and a canopy 
cover of more than 10% or trees able to reach these thresholds in situ 
(Statistics Finland, 2021). FAO/FRA forest land includes all nationally 
defined forest land, the most fertile part of poorly productive forest land 
and other areas such as forestry roads and depots. 

2.3. Multi-source national forest inventory (MS-NFI) data 

Multi-source national forest inventory (MS-NFI) of Finland produces 
thematic map layers of forest variables such as volume of growing stock 
and biomass (Tomppo, 1991, 2006; Tomppo et al., 2008a; Mäkisara 
et al., 2016). MS-NFI data has approx. 2–3 years interval between 
consecutive update of the map layers. MS-NFI is used for combining 
information from field measurements of national forest inventory (NFI) 
plots, remote sensing imagery (such as Landsat or Sentinel) and digital 

maps. Optical satellite imagery pixel values are used for predicting the 
forest variables of (non-measured) satellite image pixels by 
non-parametric k nearest neighbour (k-NN) method. In the k-NN method 
k spectrally most similar NFI plots (i.e., nearest in the satellite image 
spectral feature space) are defined for each satellite image pixel, and the 
predicted values of forest variables are calculated as weighted averages 
of the nearest neighbours (i.e. NFI plots). Digital maps are used for 
separating forestry land from other land use to which forest variables are 
not predicted. Also, digital maps are used for stratification of forestry 
land between mineral lands and peatlands, which generally tends to 
improve the accuracy of predicted data, since the peatland and mineral 
land forests have slightly differing characteristics (as regards of the 
growing stock). 

MS-NFI thematic maps include over 40 themes on forest parameters 
such as growing stock volume by tree species (m3 ha− 1), site fertility 
class, biomass by tree species (there are four species groups) in sub
classes, e.g. biomass of spruce foliage (10 kg ha− 1). In this study, we used 
MS-NFI biomass layers from 2009 to 2015. The MS–NFI–2009 thematic 
maps were based on tenth and eleventh NFI sample plot data measured 
in 2006–2008 and 2009–2010, respectively. The satellite imagery con
sisted of 38 Landsat 5 TM scenes, which were complemented with 14 
Landsat 7 TM scenes, 3 IRS P6 LISS III scenes and 10 ALOS AVNIR-2 
scenes (Tomppo et al., 2013). The images were acquired between May 
29th and August 22nd, 2009, additionally 5 image scenes were acquired 
in 2010 between dates June 1st and August 17th. The image acquisition 
date range indicates that it may be quite difficult to achieve a full cloud 
free satellite image coverage from the leaf-on season of one year, as 
would be required by MS-NFI. The full list of utilized images is presented 
in Tomppo et al. (2013). The digital map data originates from the Na
tional Land Survey of Finland (NLS) and was rasterised with a 20-m pixel 

Fig. 1. Proportion of peatlands of total forestry land (left) and proportion of drained peatlands of the total area of forestry land on peatlands (right) calculated in 1- 
km2 raster pixels. A borderline of southern and northern Finland (orange line on panels) shows the division is applied with greenhouse gas inventory data, which was 
also used in the Results section. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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size in the MS-NFI (Tomppo et al., 2013). 
In the MS–NFI–2015, the field data originated from eleventh and 

twelfth NFI inventory from measurement years 2012–2013 and 
2014–2016, respectively. The NFI tree data were updated computa
tionally by growth models to the date 31 July 2015. This time the 
employed satellite imagery consisted of 43 Landsat 8 OLI scenes and 1 
Sentinel-2A MSI scene. Satellite images were acquired between July 3rd 
and September 10th, 2015. Additionally, one scene was from August 
18th, 2016 (Mäkisara et al., 2019). Although the improved spatial and 
spectral resolution of Sentinel 2 imagery offer an advantage over 
Landsat imagery, the operational availability of the Sentinel 2 imagery 
was still very limited. In the MS–NFI–2015 data product, satellite images 
and other datasets were resampled to 16 m resolution. Some areas 
covered by clouds were completed by the previous MS-NFI products (in 
MS–NFI–2015, approximately 1.2% of forestry area), in compilation 
sub-products from years 2000–2015 (Mäkisara et al., 2019). In MS-NFI, 
numerical maps of NLS were used to exclude other land classes from 
forestry land (e.g. arable land, roads and other built-up lands, Tomppo 
et al., 2013; Mäkisara et al., 2019). The MS-NFI maps are open access 
data, available at: https://kartta.luke.fi/index-en.html. 

3. Methods 

3.1. Automatic segmentation of MS-NFI layers 

Grid cell data was aggregated to larger continuous areas to resemble 
forest management units, which were applied in the allocation of felling 
sites with forest cover loss and estimation of tree biomass and its change 
within units. Image segmentation was used for delineating forest stands 
from MS-NFI thematic maps. Image segmentation is a technique that 
aims at producing spatially continuous and disjointed units that are 
sufficiently homogeneous in relation to desired characteristics (Haralick 
and Shapiro, 1985). There are several alternative strategies for the 
segmentation of raster data, such as edge detection, region extraction, 
feature thresholding or clustering (Fu and Mui, 1981). The edge 
detection-based methods aim at recognizing edges, i.e. locations of 
significant changes in input data, such as stand borders. The process is 
local and thus, it does not assume spectral uniformity over the 
segmented area. In addition, segmentation requires linking the detected 
edges into relevant boundaries for composing appropriate spatial in
ventory units (i.e. stands). In the automatic segmentation we aimed at 
spatially continuous areas that are homogeneous by their stand and soil 
properties. For this purpose we utilized segmentation algorithm that 
combines features of edge- and region-based approaches: “Image seg
mentation with directed trees” (Narendra and Goldberg, 1980). We 
applied software that utilizes a slightly modified implementation of the 
algorithm by Pekkarinen (2002, 2004). 

The segmentation method employs the local edge gradient for 
recognizing potential segment borders. Segmentation covered forest 
land, poorly productive forest land and unproductive land, from which 
subsets of segments were selected for the study. Volumes of growing 
stock per main tree species (m3 ha− 1) estimated in MS–NFI–2015, soil 
type (mineral soils, drained organic and undrained organic soils) and 
property borders derived from National Land Survey vector data were 
used as segmentation criteria. The drainage situation was computed 
based on NLS topographic database, where drainage was defined using a 
40-m buffer around artificial ditches. We produced segmented biomass 
maps and biomass change maps from MS-NFI layers as segment averages 
for the whole country. The class variables, like soil type and site fertility 
type used in the evaluation, were treated as mode variables in the seg
mentation. The same segment boundaries were applied for 
MS–NFI–2009 data. 

3.2. Validation of biomass maps 

The data from NFI were used to evaluate biomass maps. We analysed 

biomass stocks and distribution in NFI, MS-NFI and MS-NFI segmented 
data (MS–NFI–seg). The NFI results on biomass stocks based on mea
surement years 2013–2017 were aggregated separately for southern and 
northern Finland from regional statistics (Luonnonvarakeskus, 2019), 
where NFI data comprised the forested land area. Corresponding results 
for MS-NFI and MS–NFI–seg layers were derived from layer histograms. 
Only one year NFI data, corresponding MS-NFI time points (2009 or 
2015), were used for the biomass distribution analyses to avoid changes 
in biomass due to timber harvests or any land-use changes. MS-NFI map 
features were extracted to the NFI plots for the analyses. Additionally, to 
compare the regionally summed segmented biomass stocks to the ones 
reported in the Finnish GHG inventory, we applied the FAO/FRA forest 
land definition. The GHG biomass stocks were calculated separately for 
mineral soils, undrained and drained peatland forests on FAO/FRA 
forest land (Statistics Finland, 2021). Uncertainty associated with the 
NFI estimates of biomass stock was estimated as standard error due to 
sampling (see Tomppo et al., 2011, sec. 3.5., for details). Uncertainty 
due to estimation of biomass model parameters was not included, 
because it has no impact on validation: Both NFI and MS-NFI utilise the 
same models with the same errors in parameters. 

Table 1 shows forest areas in NFI, GHG and MS-NFI data. NFI 
forested land is slightly smaller than the corresponding area in the 
MS–NFI–2015 layer. NFI classification is based on both land use and 
land cover. Therefore, in NFI, other land uses include lands with tree 
cover, e.g. small forest strips on built-up land. MS-NFI forest masks are 
based on NLS digital maps. Satellite image mosaics of MS–NFI–2009 and 
MS–NFI–2015 are presented by Tomppo et al. (2013) and Mäkisara et al. 
(2019). Biomass changes were calculated for areas, where both 
MS–NFI–2009 and MS–NFI–2015 had cloud-free cover. A large part of 
northernmost Finland was covered by clouds; however, due to climate 
and altitude, only minor part of that area fulfils forest land definition. 
Otherwise, the remaining cloudy areas were mostly in western and 
northern Finland as shown in Fig. 2. Average change in biomass com
parisons were derived directly from cloud-free images. The change layer 
between MS–NFI–2009-seg and MS–NFI–2015-seg includes cloud-free 
areas. To evaluate the effect of biomass model errors on results, we 
compared also basal areas estimates between NFI, MS-NFI and 
MS–NFI–seg data. These results are provided in the Supplementary 
material. 

3.3. Forest cover change in time-series 

3.3.1. General 
We selected the length of study period so that areas with biomass 

gains due to growth could potentially be separated from those of 
biomass losses due to harvests and other disturbances. The mean 
biomass gross increment on forest land were 3.4 t ha− 1 a− 1 or 20.0 t ha− 1 

within the whole study period (Statistics Finland, 2021). Ideally, losses 
are detected in each stand when stands are harvested or affected by 
disturbances. It has been reported, for example, that MS-NFI stem vol
ume predictions are saturated for stands over 200 m3 ha− 1 (Vastaranta 
et al., 2014). Therefore, false losses in tree biomass derived from MS-NFI 
products may occur for stands with large biomass or volume. Detecting 
biomass gains, on the other hand, may require aggregation of several 
stands, in time-series analyses significant trends have been found with a 

Table 1 
Forest-related areas in different datasets and total area of Finland including 
inland waters.  

Dataset and area attribute Total, 1000 ha 

MS–NFI–2015, Total area 33 830 
MS–NFI–2015, Forested land 23 494 
NFI, Forested land 21 943 
GHG-2009, Forest land 21 882 
GHG-2015, Forest land 21 371 
MS–NFI–seg change, Forested land (cloud free) 22 813  
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relatively large unit size, 1200 × 1200 m2 (Katila et al., 2020). In NFI11, 
mean volumes on mature stands on forest land were 251 m3 ha− 1 and 
134 m3 ha− 1 in southern and northern Finland, respectively. 

3.3.2. Biomass gains 
As stated in general section of this chapter, annual gains are rela

tively small and therefore a study period of several years was selected to 
better separate areas with biomass gains from those with biomass losses. 
Gains are detected when biomass is greater in MS–NFI–2015-seg layer 
than in MS–NFI–2009-seg layer. 

3.3.3. Biomass losses 
To detect areas with stand-replacement harvests or disturbances, a 

threshold of 50% of mean biomass loss was used for the MS–NFI–seg 

data. We compared our forest cover loss estimates to those estimated in 
the Global Forest Change (GFC) dataset (Hansen et al., 2013) to evaluate 
the precision of that product and the conclusion given by Ceccherini 
et al. (2020). GFC data shows stand replacement in cases where stand 
height has decreased below the threshold for forest land, i.e. 5 m of 
height. We downloaded the 2018 forest cover losses layer and applied 
yearly estimates from years between 2009 and 2015, version 
Hansen_GFC-2018-v1.6_lossyear_40N_080W.tif. Hansen’s GFC loss map 
was resampled on the same grid as the MS-NFI data at 16-m resolution 
using a nearest-neighbour method. A segment was considered as 
disturbed if more than 40% of the area had forest cover loss in GFC 
segmented dataset (GFC-seg). To compare segment level observations to 
NFI field data on regeneration cuttings, we selected plots measured in 
2015. If regeneration cuttings were accomplished in the measurement 

Fig. 2. FAO Forest land (green), other land use (white), waters (blue). Clouded areas (grey) on forest land, i.e. no estimate. (For interpretation of the references to 
colour in this figure legend, the reader is referred to the Web version of this article.) 
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year or five years prior to that, then the plot was considered as disturbed. 

4. Results 

4.1. Biomass estimates and distributions 

MS–NFI–seg and MS-NFI total biomass estimates were close to NFI 
values and means of biomass were slightly lower than those that were 
calculated from NFI plots (Table 2). Average basal areas according to 
protection status of forests are presented in the Supplementary material 
(Fig. S1). 

NFI field data shows the greatest variation with a larger number of 
plots on data extremes on both inventory rounds (Fig. 3). However, 
MS–NFI–2009 data had very similar frequency and biomass values to 
NFI11 (NFI measured in 2009–2013). MS–NFI–2015 preserved also 
largely the distribution pattern as in NFI12 (NFI measurement years 
2014–2017 included) except for the lower end. Segmentation showed 
higher average biomass values at the lower end of the frequency dis
tribution and on the other hand, the highest values were lower than in 
NFI. Corresponding patterns are shown also for basal areas in the Sup
plementary material (Fig. S2 and Fig. S3). The density plot on 2009 and 
2015 data shows that NFI has a relatively large number of plots with 
very low biomass, and plots with biomass values of more than 200 tons 
per hectare. Distributions MS-NFI and MS–NFI–seg data show that the 
largest and lowest values are averaged in the estimation process, which 
is the expected result (Fig. 3). The proportion of plots with over 200 tons 
per hectare biomasses were 5.0% and 0.1% in NFI11 and MS–NFI–2009- 
seg data, respectively. The corresponding proportions in NFI12 and 
MS–NFI–2015-seg data were 6.1% and 0.8%, respectively. 

Correlation diagrams of MS–NFI–2015 and MS–NFI–2015-seg data 
showed similar patterns of biomass stocks with NFI plot estimates 
(Fig. 4). In both cases correlation coefficients were of similar magnitude, 
but the slope of the fitted linear function was decreased in segmentation. 

4.2. Biomass changes 

Both NFI and MS–NFI–seg data showed an increase in living biomass 
between 2009 and 2015 (Fig. 5). In 2009, NFI resulted in slightly higher 
biomass values than MS–NFI–2009-seg but the average biomass values 
between the two datasets were still close to each other. At the same time, 
MS–NFI–seg showed a larger increase in biomass than NFI, i.e. 7.1 tons 
ha− 1 (+10.2%) and 4.6 tons ha− 1 (+6.1%), respectively. On mineral 
soils, the average biomass values were quite close to each other in NFI 
and MS–NFI–seg data (Fig. 6). On peatland soils, the MS–NFI–seg data 
showed slightly lower biomass values. Both data resulted in biomass 
increase between 2009 and 2015. However, relative changes in per 
hectare biomass were quite different in NFI and MS–NFI–seg in most 
cases except on mineral soils in Northern Finland. An exceptionally large 
difference between datasets was detected on undrained organic soils in 
Southern Finland, where NFI data resulted in a remarkably high increase 
in biomass compared to MS–NFI–seg data. 

4.3. Recognition of harvested stands 

Biomass change maps showed either gains or losses for each segment 

and a change from forest to the non-forest stage in the case of the Global 
Forest Change map (Fig. 7). Forested land was covered by areas of 
relatively small changes in biomass, according to Luke’s forest statistics, 
approximately 3.9% of the forested land area was managed with stand- 
replacement harvests during the study period (Luonnonvarakeskus, 
2022). It is approximately 150,000 ha a− 1 on average. At the segment 
level, the corresponding proportion was 4.9% with MS–NFI–seg data 
and 5.2% with the GFC-seg map. In the latter case, original data without 
segmentation resulted in a proportion of 4.2% of forest area converted to 
the non-forest stage. Examples in Fig. 7 show that for most segments, 
biomass changes based on MS–NFI–seg maps were relatively small, and 
therefore, depending on the satellite image and field data in classifica
tion, it can be difficult to distinguish between small biomass growth and 
decrease. This was the case especially in mature stands with high 
biomass levels. Only segments where biomass had decreased more than 
a threshold of 50% were interpreted as disturbed in the MS–NFI–seg 
data, i.e., presented with black colour in Fig. 7. The confusion matrix 
examining the disturbed and undisturbed segments between 
MS–NFI–seg and the GFC-seg map showed 95% of correctly classified 
segments (Table 3). However, as the proportion of disturbed segments 
was very small on both data sets, the kappa value representing the 
success of classification was 0.44, indicating a relatively weak level of 
agreement between the two data sets. The producer’s accuracy of the 
disturbed areas was 0.40, and it was 0.98 for undisturbed areas. The 
user’s accuracies for the same classes were, respectively, 0.56 and 0.97. 
There were 286 disturbed plots in NFI data, GFC-seg data detected 69% 
of those as disturbed and MS–NFI–seg data 62%, respectively (Table 4). 
In addition, large number of plots was labelled as disturbed in GFC-seg 
and MS–NFI–seg data while in the NFI being undisturbed. 

5. Discussion 

The precision of biomass estimates on MS–NFI–seg data was 
explored in this study. This included biomass estimates at regional and 
whole country level, biomass change estimates and detection of har
vested areas. The segmentation results were also tested with NFI field 
data at plot level. Especially for soil carbon modelling purposes 
achieving reliable estimates on segmentation is essential. Soil carbon 
modelling utilizes information from image segments on tree biomass 
and their changes. Compared to pixel-level MS-NFI thematic maps, 
MS–NFI–seg data provide an effective way for modelling by speeding up 
the procedures. Stand properties, such as tree species volumes, were 
used in delineating the segments from each other. Additionally soil 
characteristics and property boundaries were used in running the seg
mentation in this study. Therefore, image segments were not homoge
neous units by stand features but were affected also by management 
situations. In the end, stand properties did not necessarily follow 
segment borders, causing mixed segments. 

The assessment of the MS–NFI–seg dataset on tree biomass at the 
whole country level showed that the estimates were very close to those 
derived from MS-NFI thematic maps. Compared to NFI field data MS-NFI 
tend to overestimate forestry land area due to it being based on digital 
map masks, which are more land cover rather than land use. 
MS–NFI–2015 training data is different from NFI field data due to it 
being computationally updated to the target date, 31.7.2015, for which 
growth models were used, cuttings updated and parts of plots removed 
due to changes. The updating was performed separately for each pro
cessing window and calibrated with field data mean volumes (Mäkisara 
et al., 2019). Therefore, only minor differences between updated 
training data used in MS-NFI and original NFI field data were expected 
on biomass. In all, image segmentation did not introduce significant bias 
in mean and total biomass estimates compared to MS-NFI in Finland. 

Segments are usually smaller than typical forest management and 
treatment units and preserve much of the original image variation. In 
MS-NFI, thematic maps are based on k-NN estimation, where the value 
of k varies from 3 to 5 depending on image conditions (Mäkisara et al., 

Table 2 
Biomass estimates for NFI plots, MS-NFI and MS–NFI–seg.   

NFI plots 
2013–2017 

MS–NFI–2015 MS–NFI–2015- 
seg 

Area, 1 000 ha 22 813 23 494 23 494 
Total biomass of living 

trees, mill. tons 
1 745 1 752 1 737 

Biomass of living trees, 
mill. tons ha− 1 

76.5 74.6 73.9  
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2019). When a similar variation than in field data is desired, then k = 1 
is appropriate, and when RMSE minimisation is desired, then a higher 
value of k is presumed (Franco-Lopez et al., 2001; McRoberts et al., 
2002; Katila and Tomppo, 2001). K-NN-based satellite image estimates 
have typically high RMSEs at the individual pixel level (Tomppo et al., 
2008b), which causes undesired noise in classification results when 
aiming at further analyses of stand variables (Hall et al., 2006). When 
comparing to field data, observations on data extremes tend to be 
underestimated when a higher number of sample records are used, 
which is reported in several papers, e.g. Hall et al. (2006), Tuominen 
et al. (2017). Even though the highest and lowest biomass values were 
underestimated in segmentation maps, the country-level results corre
sponded well with NFI. Zheng et al. (2004) reported similar observations 
at regional the level. Avitabile and Camia (2018) assessed European 
biomass maps using harmonized statistics and field plots and reported 

negative bias of biomass estimates, overestimation at low biomass and 
underestimation at high biomass. In this study the bias remained low. 
The saturation of Landsat imagery is an important factor for inaccurate 
aboveground biomass estimation (Zhao et al., 2016). In this study, 
saturation was observed on protected areas and forested land available 
for wood production. Protected areas included areas with relatively high 
biomass, even though they are commonly established in areas with less 
than average productivity (Häkkilä et al., 2017). Approximately 12% of 
forested land is protected in Finland and according to the NFI mature 
forests cover 12% of the total forest land area. Classification results on 
forested land at the mature stage are predominantly affected by pixel 
value saturation. However, it was noted that MS–NFI–seg biomass es
timates are sufficiently accurate for soil carbon modelling purposes, e.g. 
as an input data for a model when selecting areas where regeneration 
cuttings have been carried out. 

Fig. 3. Density estimates of biomass for NFI, MS-NFI and MS–NFI–seg on forested land in 2009 (n = 7590 and 2015 (n = 6853) data.  

Fig. 4. Correlation of biomass stocks (tons/ha) between NFI and pixel-level MS-NFI (left) and MS–NFI–seg (right) data in 2015.  
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The biomass predictions of the MS-NFI could be improved signifi
cantly by integrating 3D remote sensing data source, e.g. in the form of 
ALS of stereophotogrammetric point cloud data (Baltsavias et al., 2008; 
St-Onge et al., 2008; Tuominen et al., 2017). The 3D point cloud data 
allows accurate modelling of forest canopy, thus enhancing biomass 
predictions, but often due to cost and availability reasons, they may be 
difficult to integrate with optical satellite data for large areas. In 
Finland, the national laser scanning rotation is currently 6 years for 
entire country, whereas digital aerial photography is acquired with 3 
years interval, thus making it theoretically feasible for MS-NFI in rela
tion to temporal and area coverage requirements. However, currently 
there is no operational procedure set up for producing such 
stereo-photogrammetric point cloud for the country. In subsequent 

MS-NFI inventories after 2015, Sentinel-2 imagery have been utilized as 
the main remote sensing data source, since Sentinel-2 has very good 
spatial, temporal and spectral resolution (Mäkisara et al., 2022). 

Forest areas managed for wood production have heterogeneous age 
structures between stands and biomass changes are caused by relatively 
high growth levels or a strong decrease in biomass due to timber har
vesting. Image segmentation decreases slightly for RMSEs compared to 
pixel-level variation. However, due to the relatively short study period, 
RMSE at the segment level can still exceed biomass growth and results in 
an unreal decrease in biomass at the segment level. Only in case of major 
disturbances such as clear-cuttings, when comparing MS–NFI–seg data 
to the GFC-seg map (Hansen et al., 2013), relative congruent areas were 
detected having biomass loss (Fig. 7). It would be also possible to 

Fig. 5. Changes in living biomass between 2009 and 2015 based on NFI field plots and MS–NFI–seg data, error bars are twice the standard error.  

Fig. 6. Biomass in 2009 and 2015 for different soil types in southern (S) and northern (N) Finland, error bars are twice the standard error.  
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combine the GFC-seg map to MS–NFI–seg biomass estimates to get small 
area estimates on total biomass lost. Harvest area estimates reported by 
Ceccherini et al. (2020, Extended Data Fig. 6) based also on GFC 
time-series and the reported average area for Finland were 

approximately 150,000 ha a− 1 in the study period. However, as derived 
from Breidenbach et al. (2021), approximately only 100,000 ha a− 1 was 
due to final harvests. The reported areas by Ceccherini et al. (2020) were 

Fig. 7. Tree biomass in MS–NFI–seg data in 2015 (left), a MS–NFI–seg change map and disturbed areas on black colour (centre) and corresponding GFC-seg map 
(right) on forest cover loss between 2009 and 2015. Above are typical commercial forests (located in Alavus SW Finland), and below are protected and commercial 
forests with higher biomass (Repovesi National Park, south Finland). In the change map, the green colour indicates the amounts of gains, and the orange-brown 
colour shows losses. Base map is from the National Land Survey of Finland. (For interpretation of the references to colour in this figure legend, the reader is 
referred to the Web version of this article.) 

Table 3 
Confusion matrix of forest disturbance on MS–NFI–seg and GFC-seg data.   

GFC-seg 

MS–NFI–seg Disturbed Undisturbed Total Producer’s Accuracy 

Disturbed 554307 834476 1388783 0.40 
Undisturbed 432041 23553325 23985366 0.98 
Total 986348 24387801 25374149  
User’s accuracy 0.56 0.97    

Correct 0.95  
Kappa 0.44  

Table 4 
Comparison of disturbed areas derived from NFI plots, GFC-seg data and 
MS–NFI–seg data.   

NFI GFC-seg MS–NFI–seg 

Disturbed Undisturbed Disturbed Undisturbed 

Disturbed 286 196 90 178 108 
Undisturbed 7670 264 7406 189 7481 
N 7956 460 7496 367 7589 
Disturbed, % 3.6 2.5 1.1 2.2 1.4 
Undisturbed, 

% 
96.4 3.3 93.1 2.4 94.0 

Total, % 100.0 5.8 94.2 4.6 95.4  
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quite stable during the study period but were increased between 2016 
and 2018. Other studies suggest that this increase in the harvest area is 
merely an artifact (Breidenbach et al., 2021; Picard et al., 2021). 

In recognition of disturbed areas, it would be better to focus on 
growing stock variables when segments are comprised. However, in 
terms of greenhouse gas emissions, soil type and management are key 
factors at the stand level to determine where potential sinks and sources 
are located. With this spatially explicit data, it is possible to provide 
input data for soil modellers to further study, on which forest manage
ment operations are appropriate for a certain type of stands to mitigate 
greenhouse emissions cost-effectively. Further, MS–NFI–seg data in
cludes amount of biomass both before and after potential disturbance. 
This information can be applied to real forest management units, com
partments, where similar information on soil and stand properties is 
available. The most reliable change estimates on biomass for segments 
were achieved on clear-cut sites. In case of smaller changes in biomass or 
tree volumes, time series analyses would improve the reliability of the 
change estimates (Katila et al., 2020). 

For time series various types free and open access remote sensing 
data are available, e.g., Landsat satellite archive and Sentinel-2 data 
more recently. Wide range of satellite data products have enabled rapid 
development of methodologies and approaches to monitor large area 
forest characteristics and change. Time series analyses can be used to 
provide more accurate estimates of forest stands than just single-year 
images. Time series allow historical and current estimates of forest 
conditions (Bolton et al., 2020). There has been significant methodo
logical development using satellite image time series in land cover and 
forest attributes estimation (Gómez et al., 2016; Hermosilla et al., 2018; 
Wulder et al., 2018; Bolton et al., 2020). Use of satellite data allows very 
large area mapping of forest biomass and other attributes. Despite the 
benefits related to low cost, wide area coverage and good temporal 
resolution of current satellite imagery, such as Sentinel-2, their low 
prediction accuracy at stand level remain drawback (Mäkisara et al., 
2019, 2022). The 3-dimensional ALS data is considered the most accu
rate remote sensing data in forest biomass estimation but as costly is 
often limited with the coverage area and temporal resolution. Advan
tage of active radar based satellite sensors have capability to penetrate 
clouds, but otherwise they do not provide more accurate data compared 
to optical satellite images (Holopainen et al., 2014; Lohberger et al., 
2011). GEDI satellite system provides large area 3-dimensional data but 
has relatively low spatial resolution. 

6. Conclusions 

This study presents segmented maps for tree biomass and its changes 
by soil type (here upland soil, peatland soil and drained peatland soil) 
based on MS-NFI forest attribute maps. Spatially accurate map data of 
biomass changes on forest land are required for optimal management 
alternatives in terms of climate change mitigation. At regional level and 
whole country level the estimated biomass stock values of MS–NFI–seg 
data were consistent with NFI field data. On the other hand, at forest 
stand level there were clear differences between the MS-MFI-seg maps 
and GFC-seg data on disturbed areas. In general, in detecting disturbed 
areas such as timber harvests, only stand-replacement changes were 
relatively reliably detected. 

Utilizing soil type in segmenting MS-NFI maps allowed us to create 
management units which are more homogeneous by their climate im
pacts as GHG emissions vary largely between mineral soils, drained and 
undrained peatland soils and, in particular drained fertile peatland soils 
are known to be emissions hot spots. The segment-level forest maps 
facilitate comparison of top-down ecosystem modelling of GHG ex
change by land-surface models against high resolution bottom-up that is 
presented here as a map. In practical forestry, decisions are made at 
management unit (i.e. stand) level, and for taking into account GHG 
exchange impact of management operations, such maps as presented 
here are needed for emissions estimation and decision making. In the 

future, the uncertainty of biomass change maps could be improved by 
introducing time series analysis of biomass maps of several time points. 
Also, the delineation of forest management units can be improved by 
introducing higher resolution canopy height data based on airborne 
laser scanning. 
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Melin, M., Pitkänen, J., Räty, M., Sirviö, M., Strandström, M., 2021. Forests of 
Finland 2014–2018 and their development 1921–2018. Silva Fenn. 55 (5), 10662 
https://doi.org/10.14214/sf.10662, 49.  

Korhonen, K.T., Ihalainen, A., Ahola, A., Heikkinen, J., Henttonen, H.M., Hotanen, J.-P., 
Nevalainen, S., Pitkänen, J., Strandström, M., Viiri, H., 2017. Suomen metsät 
2009–2013 ja niiden kehitys 1921–2013. Luonnonvara- ja biotalouden tutkimus 59/ 
2017. Luonnonvarakeskus, Helsinki, p. 86. 

Korhonen, K.T., Ihalainen, A., Viiri, H., Heikkinen, J., Henttonen, H.M., Hotanen, J.-P., 
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